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The instability of hypersonic boundary-layer flow over a flat plate is considered. The 
viscosity of the fluid is taken to be governed by Sutherland’s formula, which gives 
a more accurate representation of the temperature dependence of fluid viscosity at 
hypersonic speeds than Chapman’s approximate linear law. A Prandtl number of 
unity is assumed. Attention is focused on inviscid instability modes of viscous 
hypersonic boundary layers. One such mode, the ‘vorticity’ mode, is thought to be 
the fastest growing disturbance at high Mach numbers, M >> 1 ; in particular it is 
believed to have an asymptotically larger growth rate than any viscous instability. 
As a starting point we investigate the instability of the hypersonic boundary layer 
which exists far downstream from the leading edge of the plate. I n  this regime the 
shock that is attached to the leading edge of the plate plays no role, so that the basic 
boundary layer is non-interactive. It is shown that the vorticity mode of instability 
operates on a different lengthscale from that obtained if a Chapman viscosity law is 
assumed. In  particular, we find that the growth rate predicted by a linear viscosity 
law overestimates the size of the growth rate by O((1ogM)i). Next, the development 
of the vorticity mode as the wavenumber decreases is described. It is shown, inter 
a h ,  that when the wavenumber is reduced to O(M4)  from the O(1) initial, ‘vorticity- 
mode’ scaling, ‘acoustic’ modes emerge. 

Finally, the inviscid instability of the boundary layer near the leading-edge 
interaction zone is discussed. Particular attention is focused on the strong-interaction 
zone which occurs sufficiently close to the leading edge. We find that the vorticity 
mode in this regime is again unstable. The fastest growing mode is centred in the 
adjustment layer at the edge of the boundary layer where the temperature changes 
from its large, O(M2), value in the viscous boundary layer, to its O(1) free-stream 
value. The existence of the shock indirectly, but significantly, influences the 
instability problem by modifying the basic flow structure in this layer. 

1. Introduction 
Our concern is with the instability of hypersonic boundary-layer flows. In  the first 

instance we will consider flows where the influence of shocks is negligible, and then 
we will show how the instability problem can be significantly modified by shock 
effects. The motivation for this and related work on hypersonic boundary-layer 
instability theory is the renewed interest in hypersonic flight which has been 
stimulated by plans to build the National Aerospace Plane (X-30). A primary 
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conwrn with such vehicles is the question of where transition will occur over a wide 
range of Mach numbers and whether it can be controlled. At the largest relevant 
Mach numbers. say Mach 20-25, the extremely high temperatures associated with 
the flow would destroy the vehicle unless it were cooled, so that i t  is of interest to 
identify the effect wall temperature has on flow instability. 

The purpose of this paper is to determine qualitative features of the inviscid 
instability characteristics of hypersonic boundary-layer flows. We recall that there 
is a simple generalization of Rayleigh’s (incompressible) inflexion point theorem to 
compressible flows (Lees & Lin 1946), and that most compressible boundary layers 
turn out to  be inviscidly unstable even though their incompressible counterparts are 
stable. This is a significant result because, a t  sufficiently large Reynolds numbers, the 
growth rates of inviscid disturbances tend to be much larger than those of viscous 
instabilities ; thus they are prime candidates for causing transition to turbulence in 
many situations, The modes discussed in this paper might be referred to as 
generalized-inflexion-point modes because the phase speed of the neutral mode 
(actually the upper-branch neutral mode), is equal to the fluid velocity a t  the 
generalized inflexion point. Furthermore the eigenfunctions of the fastest growing 
modes are localized around that inflexion point. 

For convenience we will concentrate on high-Reynolds-number flow past a flat 
plate, although many aspects of our analysis are applicable to  other boundary-layer 
flows either directly or by straightforward extension (e.g. flow past a wedge or cone). 
Throughout we assume that the fluid is Newtonian, and that its viscosity is 
adequately described by Sutherland’s formula. We will also take the Prandtl number 
to he one. This simplifies the analysis since a first integral of the energy equation for 
the underlying steady flow exists. The assumption of unit Prandtl number is not 
unduly restrictive as far as understanding the properties of the fastest growing mode 
is concerned, and results in a more elegant analysis. However, as Grubin & Trigub 
(1993a, b )  show in their independent and closely related study, the properties of 
small-growth-rate modes with wavelengths much longer than the thickness of the 
boundary layer can depend delicately on the Prandtl number (see $3.3 for further 
discussion, and Jackson & Grosch 1991 for numerical calculations concerning shear 
layers). Also, while we assume that the Mach number is large, the complications 
arising from real gas effects are not investigated; Fu, Hall & Blackaby (1990) 
considered real gas effects on the Gortler vortex instability mechanism, with no 
shock present, and concluded that they have little direct influence at the top of the 
boundary layer, where the disturbance is concentrated. 

Reshotko (1 976) and Mack (1987) have reviewed work on the linear instability of 
high-Rrynolds-number compressible flows. Many of these studies are based on the 
compressible extension of the Orr-Sommerfeld equation; for a critique of the 
mathematical rigour of this approach see Smith (1979, 1989). Here we examine the 
linear stability of high-Reynolds-number flows by means of formal asymptotic 
expansions. This approach was that originally used by Heisenberg (1924), Tollmien 
(1929) and Lin (1945a-c) to study boundary-layer stability. More recently, for 
example, Smith (1989) has refined their approach by applying triple-deck theory to 
lower-branch, viscous, Tollmien-Schlichting modes of compressible boundary layers. 
Seddougui, Bowles & Smith (1991) have extended this theory to include the effects 
of severe wall cooling. Cowley & Hall (1990, hereafter referred to as CH), have shown 
how such modes can interact with a shock at large Mach number, while Seddougui 
& Bassom (1991) have looked at a weakly nonlinear version of this problem. 
However, viscous modes have relatively small rates at sufficiently large Reynolds 
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numbers, and our main concern will be with the faster growing inviscid modes. As a 
result, our analysis is based on asymptotic scalings which lead to the Rayleigh 
equation rather than the triple-deck equations. We note that the third type of 
instability responsible for boundary-layer transition, the Gortler vort,ex mode, 
develops an asymptotic structure at  high Mach numbers close1 y related to t,hat of our 
inviscid modes - see Hall & Fu (1989) and Fu  et al. (1990) for the Chapman-law and 
Sutherland-formula versions respectively. 

When a quasi-parallel approximation is formally justifiable because the Reynolds 
number is large, inviscid modes satisfy t,he compressible generalization of Ra>yleigh’s 
equation. Numerical solutions to t.his equation have been reported by, inter aZios, 
Mack (1969,1984,1987) for boundary-layer flows, Jackson & Grosch (1989,1991) for 
shear flows, and Papageorgiou (1990) for wake flows. For fluids satisfying a Chapman 
viscosity law, high-Mach-number asymptotic solutions to this equation for one type 
of so-called ‘acoustic’ boundary-layer modes have been obtained by CH, while Smith 
& Brown (1990, hereafter referred to as SB), have identified the asymptotic form of 
the ‘vorticity ’ mode ~ including an exact solution of the governing equation. Balsa 
& Goldstein (1990) and Papageorgiou (1991) have given asymptotic descriptions for 
the high-Mach-number inviscid instability of shear layers and wakes, respectively, 
assuming a Chapman-law fluid. Though the flows investigated by SB, Balsa & 
Goldstein (1990) and Papageorgiou (1991) differ, the analysis results in the same 
eigenvalue problem for the vorticity mode. This is because the vorticity mode is 
trapped in a thin layer where the overall features of the basic flow are unimportant. 

In the above-mentioned boundary-layer analyses, and also in the hypersonic 
G6rtler vortex instability analysis of Hall & F u  (1989), one of the key asymptotic 
regions for the case of a Chapman viscosity law is a logarithmically thin ‘acljust’ment8’ 
layer which develops due to the exponential decay of the underlying steady 
temperature field away from the wall. However, Chapman’s viscosity law is not 
exact, and was introduced as a useful interpolation law which greatly simplified 
steady boundary-layer calculations ; for example Stewartson (1955) hoped that the 
use of idealized physical properties would help in understanding ‘the behaviour of 
more realistic fluids’. At the large temperatures typical in hypersonic flows, 
Chapman’s law differs significantly from both the more precise Sutherland’s formula 
and the viscosity-temperature power-law formula. In fact, because Chapman’s law 
is simply a linear approximation to the viscosity-temperature dependence of the 
fluid, i t  is of questionable validity in the hypersonic limit. 

A t  high Mach numbers the steady temperature field in a fluid satisfying 
Sutherland’s viscosity formula (or a power-law formula) initially decays algebraicdly 
away from the wall, before reverting to  exponential decay in an asymptotic region 
‘far’ from the wall (e.g. Freeman (YL Lam 1959). This algebraic decay changes the 
scalings in the adjustment region ; in particular the asymptotic expansions proceed 
purely in inverse powers ofM rather thari in inverse powers of both (log (M))f arid M .  
Moreover the wavelength of the most unstable disturbance varies by a factor of 
(log (H)); in the two cases. We note that a similar difference in scalings is evident in 
the interaction region of steady hypersonic flow past a flat plate. In that case Lee 
& Cheng (1969) have shown that the shock-heating adjustment layer is logarithmi- 
cally thin for Chapman’s viscosity law, whereas for a power-law viscosity formula, 
and hence for Sutherland’s formula, the scaling for the adjustment layer is algebraic 
in nature (Bush 1966). 

The flows tJhat we consider here are appropriate to diff’erent downstream locations 
for hypersonic flow past a semi-infinite plate. In the first instance we shall consider 
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the instability of a non-interactive flow. This is appropriate to  large distances 
downstream of the leading edge of the plate, where the attached shock at the leading 
edge has no effect on the flow field. This basic state, and the Rayleigh equation which 
is shown to  govern its inviscid instability, are discussed in $2. The dispersion relation 
associated with the Rayleigh equation is then derived in $3.  We discuss the growth 
rate of the mode over the whole range of unstable wavenumbers and show how the 
vorticity mode, acoustic modes and Tollmien-Schlichting modes are all inter-related. 
A similar non-interactive flow field is also considered by Grubin & Trigub (1993a, b) .  
They assume a fluid with a power-law viscosity, and allow for a broader range of 
Prandtl numbers. 

Then in $4 we go on to discuss the basic state in the ‘interaction zone’ further 
upstream (see figure 8 for a schematic of the steady flow in this region). Since 
Sutherland’s viscosity formula reduces to a so-called ‘ power-law ’ at  large 
temperatures, the description of the underlying steady flow here is essentially that 
for a power-law fluid due to Luniev (1959) and Bush (1966). They showed that the 
‘interactive’ region occurs for R = O(N5) ,  where R is the Reynolds number based on 
distance from the leading edge. Although the resulting system of equations can only 
be solved numerically, it is still possible to consider the instability of the flow in this 
region, and we derive appropriate (quasi-parallel) stability equations. The ‘strong ’ 
hypersonic interaction limit then corresponds to letting the streamwise variable tend 
to zero on the R = O(M5)  scale. I n  that limit a similarity solution for the basic flow 
can be found (Bush 1966), and a re-scaled Rayleigh equation for the disturbance is 
derived. The solution of that equation is discussed in $ 5 .  Kote that we could have 
instead considered the weak hypersonic limit further downstream ; we also note that 
this weak hypersonic limit is different from the ‘non-interactive ’ limit discussed in 
$2. Tn particular, the ‘entropy’ layer generated by the leading-edge shock is not 
assumed to have merged into the viscous boundary layer in the weak limit (cf. 
Reshotko & Khan 1979), whereas it is assumed to have merged in the ‘very-far’ 
downstream non-interactive limit considered in $ 2  (see also Rush & Cross 1967). We 
choose to concentrate on the strong-interaction regime because, it is, to a certain 
extent, simpler. Further, if the flow is unstable in this regime it is arguable that 
growing disturbances will originate here and lead to transition. In  $6 we give a 
summary and numerical comparison, and conclude with a discussion in 57. 

2. Non-interactive steady flows 
We begin by considering the stability of steady hypersonic flow far downstream 

from any leading-edge .. interaction zone; in particular, if L is the distance from the 
leading edge, and U,, c im,  bm and ,La, are the velocity, sound speed, density and shear 
viscosity of the free-stream flow, then we assume that the Reynolds number, 

R = bm Om L/,Lm (2.1 a) 

is larger than whatever power of the Mach number, 
A 

M = LTm/dm, (2.16) 

is necessary for interactive and/or non-parallel effects to be negligible (see the 
sentence following criterion (3.29) for a more precise restriction). We adopt a non- 
dimensionalization based on coordinates Lx (where x is in the direction of flow and 
y is normal to plate), velocities c,u. time Lt/o‘,, pressure 1, Qmp, density bmp,  
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temperature T, T, and shear and bulk viscosities i, p and ,Am p’ respectively, where 
the subscript 00 denotes the value of the quantity in the free stream. On the 
assumption that the fluid is a perfect gas with a constant ratio of specific heats, y ,  
the governing equations of the flow are 

,. 

( 2 . 2 U )  

( 2 . 2 b )  

aP - + V - ( p u )  = 0, 
at 

Du 1 
p- = - Vp +- (2V - (pe) + V( (p’ -$p) V u ) ) ,  

Dt R 

where 

(2 .2c )  

(2 .34  

@ = 2pe.-e+ (p’-$p) ( V - U ) ~ ,  (2 .36 )  

and Pr is the constant Prandtl number. For a shear viscosity obeying Sutherland’s 
formula 

(2.3 c )  

where 6 z 110.4p;’ for air temperatures measured in degrees Kelvin. In  the 
numerical calculations discussed below we took Tm = 216.9 as a ‘typical’ temperature 
in the upper atmosphere, leading to the value C = 0.509. The bulk viscosity p’ does 
not appear in the inviscid-stability equations derived later in this paper. 

The boundary-layer equations can be recovered (e.g. see Stewartson 1964) by first 
substituting 

(2 .4a ,  b)  

where $ is the Dorodnitsyn-Howarth variable, and then taking the limit R --f 00. 

similarity solution to these equations exists. With 
For steady two-dimensional flow over a flat plate with leading edge at  x = 0, a 

7 =$/[(l+i-)xIf,  u = & ,  p v = - ( $ z + $ z ~ &  (2.5a) 

(2 .5b )  
1 3 = [ ( 1+6 )x ] i f ( q ) ,  T T(q) ,  p p (q ) ,  p = --, 

Y W  
the governing equations are found to be 

subject to the boundary conditions 

f (0 )  = , f ’ (O)  = 0,  f ’ ( ~ )  = T ( w )  = 1 ,  

(2.6a, b )  

( 2 . 6 ~ )  

( 2 . 6 4  
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and T(0)  = T, (fixed wall-temperature) or T ( 0 )  = 0 (insulated wall). (2.6e) 

Here primes denote differentiation with respect to  7. For simplicity we will focus 
attention on Pr = 1, and denote by T, the adiabatic wall temperature (see Grubin & 
Trigub (1993m, b )  for the Pr + 1 case). Then, as is well known (e.g. Stewartson 1964), 
the energy equation can be integrated to yield 

T = 1 + (( T’ - 1) + i ( y  - 1)M2(Tb +f’)) ( 1  - f ’ ) ,  (2.7) 

where 5’; = Tb 7; and T, = 1 + i ( y -  1)W. 
The solution to (2.6) in the limit of large Mach number has been examined by 

Freeman & Lam (1959) and Bush & Cross (1967). They showed that two asymptotic 
regions develop, distinguished by the positions where the coordinates 7 and f: = h%l, 
respectively, are order one. 

2.1. The high-temperature region: f: = O(1) 
I n  this region we writef = M-;f,,(LJ + . . ., then using ( 2 . 7 )  it follows from ( 2 . 6 b )  that 

(2.8a) 

where the constant 1 must be determined numerically. Throughout the paper 
detailed expansions are given for the solutions at  the edges of asymptotic regions; 
this is because tjhe algebraic nature of the expansions often means that more than the 
leading-order term is required to obtain accurate numerical results. The algebraic 
decay is of course different from the case of a Chapman-law fluid for which the 
expansions contain exponentially small terms. For future reference observe ( a )  that 
in this region T = O(Mz), and hence Sutherland’s formula reduces to a power-law 
form at leading order, and ( b )  that  from ( 2 . 4 ~ )  the boundary-layer thickness in this 
region is O(Ld&), and is thus relatively large (see figure la ) .  

2.2. The temperature adjustment region: 9 = O(1) 

Here, with 
f = y+.z/M:+J/Lv+. . . ,  (2.9) 

we find that the perturbat)ion f, satisfies the nonlinear equation 

[l - i ( y -  1)  (T,+ 

1 +E-;(y- 1 )  (T,+ 1)f’l 
subject to  

(2.10 a )  

In  this region T = O ( l ) ,  and thus the full form of Sutherland’s formula holds. 
Although this temperature-adjustment layer is thicker than the higher-t.emperature 
region in terms of the Dorodnitsyn-Howarth similarity variable 7,  it follows from 
( 2 . 4 ~ )  Ohat in physical coordinates it is a thin layer of O(1) thickness sitting atop the 
much wider O ( d )  high-temperature boundary layer. 
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FIGURE 1. (a)  Schematic illustration of the thickness of the high-temperature region and the 
adjustment region of the boundary layer in physical and Dorodnitsyn-Howarth variables. ( b )  The 
solution of the wall-layer equation ( 2 . 8 ~ )  for the adiabatic case T, = 1 wjth y = 1.4 and C = 0.509. 
( c )  The solution of the adjustment-layer equation (2 .10~)  for the case C = 0.509. 

In  order to illustrate the under1 ing velocity profiles, in figure 1 ( b )  we have plotted 
the function f i  against ( ( y -  1 ) / 2 ) ~  5 for the adiabatic case Tb = 1, arid then in figurc 
1 (c) we have plotted the adjustment-layer function 

Y 

G = +( Th + I )  ( y  - l)E, (2.1Oc) 

against 7 ; 6 is independent of Tb and y.  The figures illustrate the respective algebraic 
and exponential decay of the two velocity profiles away from the wall. I t  is also 
worth pointing out that  for a Chapman-law fluid the adjustment-layer equation 
corresponding to (2.10a) is linear, and that its solution can be expressed in terms of 
the exponential function. It is this simplification that enabled SB to spot the exact 
solution of the neutral vorticity mode in their study of instabilities in this layer. We 
have been unable to  find an exact solution of the analogous stability equation for 
Sutherland’s formula. 
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2.3. Rayleigh’s equation 

We now investigate the stability of this non-interactive steady flow. Sufficiently far 
downstream the quasi-parallel assumption is valid for inviscid instability modes. It 
is then appropriate to seek perturbations of the form 

( u , p )  = j”(~) , - - -  + . . . + A ( ~ ( q ) , p ( y ) )  exp (i~t~(z, z ,  t ) )  + . . ., (2.1 1 a, h )  

with similar expressions for the other flow quantities. Here A is the small disturbance 
amplitude, and as is conventional, we define local wavenumbers, a local frequency 
and a local wave speed by 

( 72) 

(a ,  p, o )  = [(i + 6) XI; (ex, e,, - et) ,  c = +. (2. I 1  c, a) 
If A is sufficiently small, substitution into (2.2) demonstrates that  the pressure 
perturbation j5 satisfies the linear, compressible, Rayleigh equation : 

(2.12a) 

The conditions that there is no normal velocity a t  the wall, and that the disturbance 
is confined to the boundary layer, can be expressed as 

$ ’ = 0  on ~ = 0 ,  $-to as r+co. (2.12 b) 

Here we have assumed that the instability modes are confined to the boundary layer. 
We do not consider modes which have the form of outgoing sound waves far from the 
boundary, or, in the case of instability waves that reflect a t  a shock, modes which 
include both incoming and outgoing waves far from the boundary (e.g. see CH). 

Equation ( 2 . 1 2 ~ )  and boundary conditions (2.12b) determine a temporal stability 
eigenrelation if 01 and p are taken to be real; alternatively they determine a spatial 
stability eigenrelation if ac and p are taken to be real. 

3. The far downstream behaviour of the inviscid modes 
In this section we discuss the asymptotic form of unstable solutions to  ( 2 . 1 2 ~ )  for 

the region far downstream of the leading edge of the plate. In a previous 
investigation CH studied aspects of the so-called ‘acoustic’ modes of ( 2 . 1 2 ~ )  in this 
region using Chapman’s viscosity law. Simultaneously SB investigated the vorticity 
mode using Chapman’s law. The main difference between these two types of modes 
is that the ‘acoustic’ modes have wavelengths comparable with the thickness of the 
boundary layer, i.e. (a,/3) = 0 ( M d 2 ) ,  whilst the vorticity mode, a t  least close to the 
upper branch, has a much larger wavenumber, i.e. (a,P) = 0((21ogW)$. Moreover 
the vorticity mode is concentrated in the adjustment layer a t  the edge of the 
boundary layer (see §2.2), whilst the acoustic one is distributed over the physically 
much larger main part of the boundary layer (see $2.1). 

However, as indicated above, at high Mach numbers the temperature variations in 
the boundary layer are large. Thus a linear temperature-viscosity law is an 
unsuitable approximation, and Sutherland’s formula or a power-law formula should 
be used to give a better representation of the viscosity. It is then important to see 
how the asymptotic structures developed by CH and SB change. 

In the first instance we derive an asymptotio solution for a vorticity mode of 
(2 .12~) .  We determine the neutral values of a, p and c for this mode, and find the 
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limiting form of the mode when the small-wavenumber limit (a,  p) -+ 0 is taken. This 
limiting solution points to a sequence of distinguished asymptotic limits. These are 
a little messy algebraically, and hence for an overview the reader may find it useful 
to  refer to  the schematic plot of temporal growth rate against wavenumber given in 
figure 7 .  Within this sequence of asymptotic limits the scaling, (a, p )  = O(M-i),  
appropriate to ‘acoustic’ modes emerges; we therefore discuss these modes as a 
limiting case of the longwavelength ‘vorticity’ mode. In  addition we indicate why 
sufficiently oblique, long-wavelength, Rayleigh modes can alternatively be viewed as 
short-wavelength Tollmien-Schlichting waves. 

3.1. Modes with wavelengths comparable with the thickness of the adjustment region : 
(a, p )  = O( 1 ) .  The vorticity mode 

Consider then the solution o f  ( 2 . 1 2 ~ )  which has the eigenfunction trapped in the 
temperature-adjustment layer at the edge of the boundary layer. We seek a solution 
which has (a, p )  = O( l ) ,  so that the wavelength of the vorticity mode is comparable 
with the width of the physically thin adjustment layer. Prom (2.5), ( 2 . 7 ) ,  (2.9) and 
( 2 . 1 0 ~ )  the velocity field, ii, and temperature field, T ,  of the underlying steady flow 
expand as 

(3.1a, b)  

where 7 = y/27, and 0 has the asymptotic behaviour 

G = - - + B + ( 2 8 + 1 ) +  - 9  ... 
+T q3-“’ 

as 7’0, (3 .2a)  

G --f 0 exponentially as T+ 00. (3.2 b )  

Here B is a constant which has to be calculated numerically; B = - 1.81447 for our 
choice of the Sutherland constant, 6 = 0.509. 

Next we expand a, /I, c and 9 in the forms 

f?+ ...) 9 = r;+ ... ( (3.3a-c) 
1 2 

@,/I) =-(&,j)+ ..., c = 1 +  
4 2  (?-I) (Tb+1) lM2 

where we have assumed that the disturbance moves downstream with the fluid speed 
in the adjustment layer. On substituting for ti and T from (3.1), and using (3.3), we 
find that the zeroth-order approximation to ( 2 . 1 2 ~ )  in the adjustment layer is 

(3 .4a)  

where f = (&2 +&t. (3 .4b)  

Equation (3 .4)  is to be solved subject to p vanishing in the limits g-0 and 5-t co, 
i.e. the disturbance is to be confine9 to  the adjustment layer. For 17% 1 it follows 
from (3 .4)  that$ decays like exp (-kq), whilst for g < 1 a WKBJ solution of (3.4) can 
be expressed in the form 

(3 .5)  

where (3.6) 

13 I’LM 247 



378 N .  D. Blackaby, S. J. Cowley and P.  Hall 

\ ,  
0 0.2 0.4 0.6 

01 

FIGURE 2. The dependence of the vorticity-mode growth rate Im (22) on the wavenumber 2. 
The dashed curve represents the asymptotic prediction (3.9) and (3.13b). 

First, we restrict our attention to the neutral case. The relative wave speed 6 is 
then real and can be evaluated hy finding the fluid speed correct to orderW2 at the 
generalized inflexion point where 

a 2T s" 2G 
- 1 1 1 1 - 3  = 0, i.e. where -+-- = 0. 
a7 T B' 1-G 

(3.7a, b )  

A numerical solution to ( 2 . 1 0 ~ )  using a Runge-Kutta method shows that this occprs 
at 5 z 1.604924, in which case t % -0.993937. The corresponding real value of k is 
obtained by integrating (3.4) from = 0 to 7 = 00. In order to avoid difficulties at 
the generalized inflexion point, the path of integration was deformed into the 
complex 7-plane by taking a triangular contour around and below the inflexion 
point. Such a calculation predicts that the neutral wavenumber is I;: M 0.645065. 

However, of greater significance are the unstable eigenmodes. First, we consider 
the results for the case of temporal instability; these are obtained from a numerical 
solution of ( 3 . 4 ~ )  with the boundary conditions (3.5) and (3.6). Figure 2 illustrates 
the dependence of the scaled, temporal growth rate, Im(&t),  on the scaled, real 
wavenumber Oi for two-dimensional modes. The maximum scaled, temporal growth 
rate, lm(Oi6) NN 0.256853, occurs at Oi % 0.143619. Further, it follows from the 
functional form of 8, i.e. 6 3 E ( L ) ,  and Squire's theorem, that three-dimensional 
modes have smaller (temporal) growth rates, as do 'acoustic' modes (see $3.2 and the 
Appendix). Hence this two-dimensional mode is the most (temporally) unstable 
inviscid mode for a hypersonic boundary layer. We note that 15 as defined above is 
independent of Tb and y ,  and that from (2.11) and ( 3 . 3 b )  the non-dimensionalized 
(temporal) growth rate is 

2/ 2Ra Im (&t ) 
[( 1 + 6)  XI; ( y  - 1 )  ('16 + 1)MZ ' 

Thus wall cooling, i.e. 0 < T,, < 1 ,  has a destabilizing effect on the vorticity mode to 
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FIGURE 3. The real and imaginary parts of the vprticity-rnode*eigenfunction a t  three different 
values of the wavenumber: -, k = 0.64; ---, k = 0.30; --, k = 0.05. The upper three curves 
correspond to the real parts for the normalization chosen here. 

the extent that the temporal growth rate can be doubled by reducing the wall 
temperature sufficiently. 

To consider the spatial instability case, i.e. w ,  ,13 real and u complex, an extra term 
in the expansion of (3.3a) is required; thus we expand B and f as 

where &, = (B:+p)i, ) = 42/3 ,  and there is no need to scale the real frequency w .  On 
substitution into (2.12a), (3.4a) is again found to govern the stability properties if f 
is replaced by in. It follows from (2.114 and (3.8a, b )  that 

( 3 . 8 ~ )  

The scaled, spatial growth rate, Im ( -bJ,  is thus identical to the scaled, temporal 
growth rate Im (26) (see also Balsa & Goldstein 1990). This is a direct consequence 
of the vorticity modes being ‘near neutral’ in the sense that they propagate with 
approximately the free-stream velocity. Thus the spatial instability properties can 
be immediately deduced from those for the temporal case. In particular, wall cooling 
has a destabilizing effect and two-dimensional modes are the most unstable. 

In figure 3 we show the normalized, complex-valued, eigenfunction of the 
vorticity-mode equation at different values of the wavenumber. This figure indicates 
that as the wavenumber decreases, the eigenfunction starts to expand out of the 
adjustment layer. Thus, if the wavelength increases sufficiently the possibility arises 
of the disturbance extending outside the boundary layer, nnd hence of it interacting 
with external flow features such as shocks. Further, the form of the growth rate at 
small wavenumbers is of interest because, for sufficiently small values of the 
wavenumber, the vorticity mode is expected to develop a structure similar to that 

* A  

b, = w ,  a1 = -uoc. 

13.2 
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I I 
1 1 ,  Wall layer 

FIGURE 4. The different regions that emerge in the srnall-i limit. 

of the ‘acoustic’ modes. In  the following discussion we will isolate the significant 
asymptotic regimes which occur in the small-wavenumber limit. 

The key to understanding the subsequent regimes when$, p are related to inverse 
powers of the Mach number is to write down the small-k asymptotic structure of 
(3.4). Figure 4 is a schematic illustration of the different regions in q-space which, 
following the analysis of the remainder of this subsection, are found to emerge in the 
limit f + O .  Also shown in this figure is the high-temperature wall layer, 7 = O(M-4). 
For the moment f is not considered to be sufficiently small for it to be O(M-$ for 
some positive 6; it then turns out that region 11, and to 5 lesser extent regions I and 
IV, are passive. However, at sufficiently small values of k the wall-layerAstructure of 
the basic state will enter the problem - see $3.2. Note that the small-k limit to be 
considered for the remainder of this section corresponds to the ‘long-wave’ limit 
considered independently by Grubin & Trigub (19933) for a general Prandtl number, 
but a power-law type of viscosity. 

Careful numerical calculations indicate that c  ̂ becomes large for small values of h. 
After some scaling arguments (see $5.1 and/or Blackaby 1991 for details of the type 
of argument employed) we deduced that c  ̂ expands in the form 

(3.9) 

Also, it follows from (2.12b), (3.2b) and (3.4) that in region I, i.e. for - kl, 
j i  = exp(-iT)+ ..., 

where an arbitrary multiplicative constant has been set equal to one. This solution, 
together with expansion (3.9), suggest that in region I1 the pressure should be 
expanded as 

$ = I + f:& + &,+ . .. + is$ ,  + i($,-q) + i:($?8-$il 7) +if (j i9-ji2T) 
+ iy(filo -j33 4) + fypll + f y p 1 2  + 8 F l 3  + kp14 + . . . , (3.10) 

where we have anticipated the form of several terms in this expansion in that 
$1, $2, are taken as constants, whilst pll, p12, etc. are functions of 7. A t  O(& 
we find that pll satisfies 

Pil -2G/c^, = 0,  
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so that after use of the exponential matching condition it follows that 

(3.11) 

where $11 is another constant. $12 and p13 satisfy similar equations with forcing 
functions coming from the higher-order terms in the expansion of the wave speed. 

The O ( i 2 )  term in (3.10) is then found to satisfy 

which may be integrated twice to give p14. However, it is enough for our purposes to 
note that p14 cc i+-6 as 7+0. Hence the O(/& and O ( i 2 )  terms in (3.10) become 
comparable when 7 = O(k4). This suggests that in sublayer I11 we should define 

and expand the pressure as 

- " 1  6 = k-77, 

$ = l+ i+p l+  ...+ ifi,+LW8([)+..,, (3.12 a) 

where we have, by matching with the solution in II, again anticipated several terms 
in this expansion. At O(&) we find that p8 satisfies 

with solution 

(3.12 b)  

( 3 . 1 2 ~ )  

where the constant of integration has been choaen to satisfy + - 1 as [+ co, in 
order to match with the solution in 11. From (3.12c), it follows that p8 - [-' as 
[+O, from which it can be easily deduced that (3.12b) is no longer the appropriate 
zeroth approximatio? to (3.4) when 7 - i i .  This suggests that in sublayer IV we 
should define = # [, leading t o  the zeroth-order approximation to (3.4) : 

8 81 
&+Tp[---p = 0. E P  (3.12d) 

This equation must be solved subject to $ t 0 as f -  0. The appropriate solution that 
matches with the leading term in (3.12a) is 

where K; is a modified Bessel function. A complete match with sublayer 111 can then 
only be achieved if 

(3.13a) 

It is assumed in (3.13a) that  6, is complex; hence the unique root consistent with 
Im (el) > 0 is 

(3.13b) 
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which corresponds to an unstable mode of (2.12a). We note that to leading order the 
eigenvalue is independent of the Sutherland constant 6 ; indeed all the long- 
wavelength asymptotes derived below are independent of 6 to leading order. 

3.2. Modes with wavelengths comparable with the thickness of the high-temperature 
region: a,P = O(M-t). The link with acoustic modes 

Next we consider the situation when a, ,8 are so small that region IV in figure 4 
merges with the wall layer of the basic state (see 52.1). Since the wall layer is of 
thickness M-i, this occurs when (a, p) - M-B. It is then appropriate to write 

(a,P) =M-:(ao,po)+ ... . (3.14a) 

Since (1-c) = O(M-$) from (3.3b) and (3.9), the zero-order approximation to (2.12a) 
in the wall layer is thus 

(3.14b) 

where a prime denotes a derivative with respect to the wall-layer variable 6 = &y, 
and a,, = fh is the first term in the expansion o f @  in that layer. The above equation 
is to be solved subject to p'(0) = 0. For large 6 it  has the asymptotic solutions 

fl- No = constant and @C7 - Nl = constant. 

For most choices of ao, Po, Tb and y ,  the constant No is non-zero, and the asymptotic 
structure for layers I, 11, and I11 survives intact. Thus for these values of a. and Po 
the wave speed c expands as (see (3.3), (3.9), (3.13b), (3.14a)) 

2s 
l@(y-l)(T,+l)(a;+P,")T 

2 + . . . ,  
1 

c = 1 + -  (3.15a) 

implying that the temporal-wave growth rate, l m  (m), is of order M-8.  The spatial- 
wave growth rate is also of this order since the transformation (3.8c), between the 
temporal and spatial growth rates, is still valid on substitution of the appropriate 
modified expansion, analogous to (3.15a), for a. 

However, equation (3.146) has a countably infinite set of eigenvalues for which the 
constant No = 0. For two-dimensional disturbances with Tb = I and y = 1.4, a 
numerical solution of (3.14b) yielded the eigenvalue sequence 

a0 = 2.47,7.17,12.19,17.33,22.54,27.79, ... . (3.15b) 

The first three eigenfunctions associated with this sequence are shown in figure 5. As 
explained in the Appendix, the decay of the eigenfunctions away from the wall leads 
to a dramatic decrease in the growth rate. Moreover, the eigenvalues indicate the 
existence of neutral acoustic modes that are the counterpart of those discussed by 
CH for a Chapman-law fluid. 

The decrease in growth rate a t  the discrete set of eigenvalues is reflected in the 
finite-Mach-number calculations of Mack (1969, 1984, 1987). Mack (1984) numbers 
each local maximum in growth rate, and identifies the local maxima with different 
modes. We believe that it is a moot point what these modes are called, e.g. first mode, 
nth acoustic mode, vorticity mode.? However, what is clear from our analysis is that 

7 Mack (1987, 1991, private communication) refers to modes where the pressure fluotuation at  
the wall is larger than that at the generalized inflexion point as acoustic modes, and vice versa for 
a vorticity mode; other authors have adopted alternative terminology (e.g.  SB). 
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FIGURE 5 .  The first three neutral acoustic-mode eigenfunctions. 

Modes 1, 2, 3 have 0, 1, 2 zeros in (0, co) respectively. 

some of the modes that Mack terms unstable acoustic modes, can, in some 
asymptotic sense, alternatively be viewed as long-wavelength vorticity modes. 

The structure of the modes in the vicinity of the eigenvalues is given in the 
Appendix. There we show that both inflexional and non-inflexional neutral 
‘acoustic’ modes can be found. However, depending on the parameters of the basic 
flow, these neutral modes may or may not be the continuation of a long-wavelength 
vorticity mode (e.g. see also figure 9 of Mack 1987). 

We note also that it is possible to seek small-growth-rate acoustic-type modes with 
(a,& = 0 ( 1 ) ,  i.e. with wavenumbers comparable with those chosen in $3.1. The 
eigenfunctions for these modes are again concentrated in the [ = O( 1) wall layer, but 
they now have a fast variation in this layer which can be described using the WKBJ 
method. At certain values of (a, p) these eigenvalues coalesce with the neutral 
vorticity mode discussed in $3.1. An analysis outlined in CH, and developed in full 
in SB, can be performed to describe the ‘splitting’ of the eigenvalues in this region. 
We do not pursue this calculation here, since our main concern is with mapping out 
the full asymptotic structure of the long-wavelength limit of the vorticity mode, e.g. 
we wish to see if the vorticity mode connects with another neutral state. 

Thus the main significance of the (a,  p) = O(M-t) asymptotic regime is that it is at 
this stage that ‘ acoustic ’ modes fully emerge. However, apart from asymptotically 
small regions close to neutral acoustic-mpde eigenvalues, the small-wavenumber 
structure developed initially in $3.1 for I% + 1 ,  see (3.3), (3.9), (3.13) and (3.15), 
survives this regime largely intact. We conclude that the scaled departure of the 
complex wave speed from the unit free-stream velocity increases without bound as 
the wavenumber decreases to zero, thus suggesting that another asymptotic regime 
will develop. 
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3.3. Modes whwe the phase and free-stream velocities difler by the order of the 
sound speed: a ,  p = O(M-i) 

The next significant stage in our description of the long-wavelength limit of the 
vorticity mode takes place when its phase velocity differs from the free-stream 
velocity by the order of the sound speed. This occurs when the temperature in the 
upper layer, i.e. where 7 - a-l, becomes such that T - (U-C)~LW (see (2.12a)).  The 
pressure eigenfunction in the upper layer then has its decay to zero modified. This 
situation occurs when 

(3.16a, b) c = 1 +C1/M+ ..., (a,P) = (l/Mi) ( l ,m)+ ...) 
with the result that  
figure 4, is given by 

Region I1 is again 
as 

the pressure in the upper layer corresponding to region I of 

9 - exp ( - ( ~ ( 1 -  q) + r n 2 ) 1 ~ - f  7) .  (3 .17)  

passive, while in region 111, the disturbance pressure expands 

9 = 1 + .,. +P2([)/Mz + ..., 
where ( is now defined by [ = M v .  The perturbation pz satisfies the equation 

P; + 288B f i  = (lz+mZ)(F)’, ( 3 . 1 8 ~ )  
((36g+c1@) 

- 
(3.18 b )  

2 
where B =  

The solution of this equation that matches to (3.17) is 

(Y - 1) (Tb + 1) ‘ 

d[+ ( I 2 (  1 - q)  + m2)i . (3.19 a) 
15; = -(l+$J(J co (36C1)2(Z2 + m2) 

In  the wall layer there are now no neutral-acoustic-mode eigenfunctions, and thus 
the matching condition with (3.17) leads to the eigenrelation 

1 j ( 3 6 B + ~ ~ p ) ~  

(3.19b) 
O0 (36Cl)’(Z2+m2) 

d[+ (12( 1 - $) + m2))f = 0. s, (36B”+C1 p)z 
A more concise form of (3.19b) is found by writing 

and then integrating to yield 

(P+a2) + + (P(1 -G)  +m2)i = 0 

For large wavenumbers we obtain 

e4irr/7 

c1 - as (iz+a2)+ GO, (p + a2 

(3 2 0  a)  

(3 20  b )  

(3.204 

which matches with (3.13b) and (3.15) as required. For small wavenumbers such that 
7% = O(q, i 6 1 ,  we find that 

(3.20d) 
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Furt.her, for two-dimensional modes it is relatively straightforward t,o show t,hat 
f -Clr) and Cli are monotonic decreasing functions of 1. 

It follows from (3.20c,d) that for modes with f i  = O(q the scaled growth rate, 
Im (kl), has a local minimum (see also figure 7) ; similarly the distance from the 
boundary that the mode is felt, which is inversely proportional to El (see (3.17)), has 
a local maximum. We conclude that on the one hand the small (temporal) growth 
rates seem to  diminish the importance of this scaling, while on the other hand its 
relevance is possibly increased by the fact that the mode extends some distance away 
from the boundary so making interactions with external flow features such as shocks 
more likely. Again, as the modes under current consideration are 'near-neutral' (see 
(3.16a)), the spatial growth rates are directly proportional to the temporal growth 
rates. 

Grubin & Trigub (1993h) show that the minimum in growth rate is a consequence 
of our choice of unit Prandt'l number. They identify a similarity parameter, sgt, 
which for a viscosity law proportional to  @ (i.e. one close to the Sutherland formula), 
is 

'gt= P r + 3  . 
They show that for 0 < sgt < +, a lower-branch neutral mode can be identified on the 
present scaling, but that  for + < sgt < 1 (the choice Pr = 1 yields s~~ = $), there is a 
minimum in the growth rate (see above). 

The increase in the growth rate for small wavenumbers in (3.20d) suggests that  
another asymptotic regime exists for sufficiently long waves. Further, i t  follows from 
(3.19b) and (3.20d) that  as (T, f i )  + 0 theM-4 layer decreases in size like 6; as a result, a 
different asymptotic structure is reached when the M-i and ild layers merge for (c f i )  = O(M-f), (a,p) = O(2M-i) and q = O ( N ) .  This scaling is studied in $3.4. 

However, the above is not the only distinguished limit for small wavenumbers; if 
f i  = O(TA) as T+O, then Cl = (T-A)> and the eigenrelation (3.20b) simplifies to 

?T?+ + (YE2 -P8$ N 0. (3.20e) 

Note that in contrast to modes with compara'ble wavenumbers, i.e. f i  = O(q, the 
growth rate of these strongly oblique modes decreases as crii decrease, while the 
distance the modes extend away from t:he wall increases. Again, for sufficiently small 
wavenumbers a new asymptotic regime arises. In  particular, because the thickness 
of the M-; layer decreases in size like %, a rescaling is necessary when i= O(M-F), 
cc = O(M-C), p = O(M-a), and c = O(1). This scaling is examined in $3.5. 

3.4. Modes with phase velocities comparable with the free-stream velocity : 
01, /3 = O(M-t) 

3(2Pr-  1 )  

Here we expand a, p and c in the forms 

c = c,+ ..., ( 3 . 2 1 ~ )  

Now there are just three regions, of depth M-i, MO,  and to consider. As indicated 
above, the extent of the perturbation away from the wall has been reduced by a 
factor of Mi from the order-Mz scale in the previous subsection. This reduction in 
depth arises because the (@-c) term in ( 2 . 1 2 ~ ~ )  is now sufficiently large to dominate 
the temperature term T. For I1 = M-i 4 = O( l ) ,  the leading-order solution to the 
Rayleigh equation which decays at infinity is 

= exp ( - a H ) ,  (3.21 b )  
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FIGURE 6. (a) The real part of the yave speed co as a function of i ( y  = 1.4, insulated wall). 
( b )  The growth rate Im (Zc,) as a function of 1 (y = 1.4, insulated wall). 

where cr = il( 1 -co), and it has been assumed that co has a positive ima.ginary part. 
Since j5q-+-M-:u as H + O ,  the solution for fj in the passive 9 = O(1) region is 

9 = 1 +  . . . + (l/M") (&- 0-7) + . . . (3.21 c) 

where $3 is a constant and, as before, the dots indicate other constant terms which 
can be found by matching. It remains to  consider the high-temperature layer where 
7 = M-i 6. Here 9 expands as 

3 = 1 +  ...+( 1/1M2)Pz('g)+ ...) ( 3 . 2 2 ~ )  

which leads to the governing equation for P2 : 

2u; - pi-- P;. = $ ( i z + h 2 )  (y-  1)2(Tb+uo)2(1-u,)2 

uo-co 

-4i2(y-- 1 )  (Tb+uo) (l--u0) (u,-c,)~. (3 .22b)  

A solution can be found which satisfies both the boundary condition on 5 = 0 and the 
matching condition with (3.21 c), if 

-2 i2(u0-c0)2)  d( = -ii. (3.23) 

This is the required eigenrelation to 4etermine the complex wave speed co as a 
function of the scaled wavenumbers 1, m. A large-wavenumber analysis of this 
equation shows that the eigenvalue matches to ( 3 . 2 0 d ) .  

In figure 6 we show the wave speed and growth rate as a function of i for a tyo- 
dimension$ mode in the case of an insulated ~ $ 1 .  The maximum value of Im (lc,) 
occurs for 1 - 598, and a neutral mode exists for I N 11 1 ; the neutral mode takes the 
form of a radiating sound wave far from the boundary. It follows that two- 
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dimensional modes do not exist for sufficiently small wavenumbers, although three- 
dimensional modes with small wavenumbers can be found. In particular, if 1 + 0 such 
that 

h = 2 5 ,  (3.24 a )  

where 3 = O ( l ) ,  then to leading order (3.23) reduces to 

"1 

(3.24 b) 

For an insulated wall, growing modes can be found for P 2 3.2,  and hence for 
sufficiently oblique modes there is no small-wavenumber cutoff on this scale. At very 
small wavenumbers these oblique three-dimensional waves match onto modes with 
a = O(M-i), ,8 = O(M-3) - see $3.5.  Note that since the wave speed now differs by an 
order-one amount from the free-stream speed (see (3.21 a)), the spatial instability 
properties cannot be immediately deduced from the temporal ones. However, (3.23) 
is still the leading-order dispersion relation. 

To summarize the results for this scaling: ( a )  a lower branch neutral curve for 
'moderately' oblique modes can be found, ( b )  for fixed spanwise wavenumbers there 
is a local maximum in the growth rate as the streamwise wavenumber varies, and (c) 
the most unstable temporal mode for this scaling is two-dimensional. 

3.5. Highly oblique long-wavelength modes: a = O(M-g), ,8 = O(M-i), c = 0(1) 
The analysis for this scaling proceeds much as in the previous two subsections. We 
write 

c = c o +  ...) (a,P)=(i/M,%/M$+ ..., (3 .25)  

then in the outer layer where 'I = O(Hi), 

- e x p ( - a H T ) ,  (3.26 a)  

with CT = i(i2(l - ~ ~ ) ~ - f i ~ ) i ,  and Re (a) > 0. (3.26 b)  

The middle layer, defined as where 7 = O ( l ) ,  is again passive (cf. (3.21 c ) ) ,  while in the 
high-temperature boundary layer we write 

fi = 1 + ... + (1/~4)P,([)+ ... . ( 3 . 2 7 ~ )  

The governing equation of P4 has a solution that both satisfies the boundary 
condition at the wall and matches with (3 .26) ,  if 

d[ = -i(~2(1-c0)2-&2)f. (3.27b) (y  - 1 ) 2 (  Tb + uo)2( 1 - uo)2 

4(u0 - c0Y 

As i,&+ 00, this expression can be shown to match with (3.20e) and (3.243) if 
f i  = O(iA) and % = O(B) respectively. As i , m + O ,  the growth rate of the mode 
decreases, and for i<  rE < 1 an asymptotic expansion of (3.27b) shows that 
co = O(&), while Im(co) = O(G2). This behaviour is analogous to that at small 
wavenumbers for instability modes of the incompressible Rayleigh equation. 
Further, a scaling argument shows that viscous effects are no longer negligible when 

(a,P/M) = O(R-XM-9). (3.28) 

Except for the factors ofM, this is essentially the viscous scaling for neutral, 'upper- 
branch ', Tollmien-Schlichting waves in slightly compressible flow (e.g. Gajjar & Cole 
1989). For hypersonic flow a neutral mode does not exist on this scaling. However, 
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FIGURE 7. Schematic illustration of the growth rate of two-dimensional modes for different 
wavelengths. There are an infinite number of neutral acoustic modes. In the neighbourhood of these 
modes typical growth rates are O(MP).  

a small-wavenumber expansion based on the scaling (3.28) can be shown to match 
with the lower-branch, triple-deck, Tollmien-Schlichting waves studied by Smith 
(1989) and CH. 

This completes our asymptotic description of quasi-parallel instability modes of 
basic flows far downstream of any leading-edge for unit Prandtl number. The major 
asymptotic regimes of inviscid modes have been identified, and we have indicated 
how inviscid modes can be matched to highly oblique Tollmien-Schlichting waves. 
A schematic indicating the temporal growth-rate for different wavenumbers is given 
in figure 7 for two-dimensional modes. 

We have found that:  ( a )  the fastest growing modes have (a,,8) = O(1) and 
Im (w )  = O(M+), (b)  the two-dimensional modes whose influence extends furthest 
from the boundary have CL = O(M-f), I m  (w )  = O(M-y) and an O(M5) scale normal to 
the boundary, and ( e )  the modes whose influence is felt furthest from the boundary 
are the three-dimensional, highly oblique, lower-branch Tollmien-Schlichting waves 
studied by Dunn & Lin (1955), Ryzhov (1984), Smith (1989) and CH. 

Finally, if non-parallel effects are to be negligible we require 

a 4 R-i. (3.29) 

For example, in the case of the longest waves that we have studied in detail, i.e. those 
with scaling (3.25), this criterion isR 4 M 9 ;  this condition is also that for non-parallel 
effects to be negligible in the case of lower-branch Tollmien-Schlichting waves 
(Blackaby 1991 - see also Smith 1989). 

4. The inviscid instability problem in interactive boundary layers 
We consider now the hypersonic flow of a Sutherland-formula fluid past an aligned 

semi-infinite flat plate when leading-edge effects cannot be neglected. We assume 
that the plate has a sharp leading edge. There will then be an attached shock which 
acts as an upper boundary for disturbances. The steady flow beneath the shock has 



The instability of hypersonic ,flow past a flat plate 389 

Viscous boundary layer I 
Flat plate 

FIGURE 8. The different parts of the flow field in the hypersonic limit. 

been studied by Stewartson (1955, 1964)’ Bush (1966) and others. Our formulation 
closely follows this earlier work, and so the reader is referred there for a detailed 
formulation. Only the parts of the solution that we require are outlined below. 

As before a choice of viscosity law must be made. Mathematical simplifications 
sometimes arise with the choice of the model Chapman law. However, in interactive 
hypersonic flow no significant complications arise from the use of Sutherland’s 
formula - primarily because the viscous layers are regions of high temperature where 
Sutherland’s formula reduces to  a power law, ,uu!P, with 5-i. The steady 
hypersonic flow of a general power-law fluid past a flat plate has been studied by 
Luniev (1959) and Bush (1966) among others. 

Figure 8 illustrates the distinct asymptotic regions that describe the different parts 
of the flow field beneath the shock. The lower region is hot and viscous, and of 
comparable thickness to the cooler, inviscid, upper region. Between these two layers 
is a thin viscous adjustment region, whose accurate description is vital to the correct 
formulation of the instability problem. We consider each of these regions in turn. 

4.1. The upper inviscid region 
Since viscosity is negligible in this region, the choice of viscosity law does not alter 
the well-known governing equations. As in previous studies we assume that the 
steady flow is two-dimensional, and introduce the steady streamfunction $ defined 

pu = $g> pv = -$,. (4.1 a ,  b )  
by 

Then the velocity, temperature, density and pressure are expanded as 

(u- 1, v ,  T , p , p )  = ( U , / W ’  V J K  Tl,Pl> P J W  + ... . (4.2 a-e) 

On substituting into (2.2) and (2.3), and re-writing the equations in terms of Von- 
Mises coordinates using the scaled streamfunction 

$ = M e ,  (4.2f) 

the leading-order governing equations are found to be 

V l Z  = -Pl$ U l $  = @/ax) ( l / P l ) >  P ,  = E($)pT. (4.3 u-c) 
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The function E(&) can, in principle, be evaluated from the initial conditions for these 
hyperbolic equations. The latter are specified at the shock, which is taken to be at 
y=M-lP(x), for some unknown function F .  Conservation of mass, and the 
Rankine-Hugoniot relations imply that at  the shock 

2(F’2- 1) ( 2 y P -  y +  1)  (y+ 1 ) P  
(y+ 1)F’ ’ p 1  = y(y+1)  ’ = 2+(y--l)F’2’ 

$ = F ,  v l =  

( 4 . 4 4  

4.2. The strong-interaction zone 

The solution of (4.3), (4.4), and the corresponding equations for the lower layers, can 
be investigated analytically for large and small x using expansion procedures, e.g. 
Stewartson (1955, 1964), Bush (1966), Bush & Cross (1967), Brown & Stewartson 
(1975). We will concentrate on the small-x solution valid very close to the leading 
edge of the plate, although equivalent expressions for large x can be found. 

Since the shock is attached to the leading edge, for x 6 1 it follows that F cc x”. 
Then a scaling argument based on (4.3) and (4.4), together with the viscous equations 
(4.10), (4.11) and (4.12) given below, shows that the pressure and normal velocity in 
the different asymptotic regions match if n = (e.g. Stewartson 1964; Bush 1966). 
The appropriate similarity solution is thus of the form : 

F = alxi+ ..., & = a,xg$, (4.5a, b) 

(4.5~-e) wl = a1 X-+V~($) + . .., p1 = a; x-+pl($) + . .., p1 = ~ ~ ( $ 1  + . . . . 
On substitution of (4.5) into (4.3) and (4.4), it follows that 

(4.6a, b)  E($)  N el a! as $+ 0, where e - 9(Y--lY 
- 8(y+ 1)Y” ’ 

and that 

(4.7a-c) 

where 

For given y a numerical solution can be found for f < 1 ; in particular pl,, = w(0) and 
v1,, e ~ ~ ( 0 )  can be evaluated. Note that p1 K $0 as $ + O ,  and thus we require 
y > $ if the leading-order solution for v1 is to have the form ( 4 . 5 ~ )  ; this condition 
is satisfied for a realistic gas. 

The no-slip boundary condition is not satisfied by (4.2a), and thus there is at least 
one viscous sublayer beneath the present region. We consider next the viscous 
boundary layer which is immediately adjacent to the surface of the plate. 

4.3. The viscous boundary layer 
As is conventional the pressure does not vary significantly across this boundary 
layer, and it is appropriate to take T = O(M2) as in $2. I t  follows from (2.24, (4.lb) 
and (4.2e) that $ = O(MP),  and so we introduce the scaled streamfunction 

Y = M3$. (4.8) 
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A balance between viscous and inertia forces then demonstrates that the hypersonic 
parameter, r ,  defined by 

should be taken to be order one (Luniev 1959). (Note that by a suitable redefinition 
of the lengthscale L we could take r = 1 without loss of generality.) Recall that the 
power of the Mach number is six in the definition of the hypersonic parameter for a 
linear viscosity law. The appropriate expansions of the flow quantities are 

R = rM5, (4.9) 

with pl = (1+6)$. 
Tn order to simplify the analysis, we now assume that the wall is an insulator. As 

we are once again taking the Prandtl number to be unity, the energy equation can 
then be integrated once to  obtain (but see Stewartson 1964, for a caveat) 

(4.11) 

We do not expect the relaxation of these assumptions to substantially alter our main 
conclusions, but they allow us to  explain more simply the effect of the shock on the 
inviscid modes. 

The streamfunction is again adopted as an independent variable instead of y. The 
x-momentum equation in the boundary layers then becomes 

= ;(y - 1 )  (1  - q). 

(4.12) 

where P, = Pl(x) = pl(x, 0). The boundary conditions on the wall, and the matching 
conditions with the upper inviscid layer, yield 

[J ,  = O  on Y=O, U1-+l+O(!P-4) as !Py;.cn, (4.13a,b) 

and after some manipulation 

(4.14) 

where we have anticipated the fact that the viscous adjustment region plays a 
passive role as far as leading-order matching is concerned. 

4.4. The boundary-layer solution in the strong-interaction zone 
For small x we introduce the similarity variable Y, and the velocity function 8( Y), 
defined by 

(4.15u, b )  

(set: Lees 195.3). The boundary-layer equation (4.12) then takes the similarity form 

with boundary conditions 

O(0) = 0, u= 1 -  18y2 +... as ~ - + c o .  
( 3 y -  1)2p4 

(4.16) 

(4.17a, b )  
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This is a modified Falkner-Skan equation where D decays algebraically rather than 
exponentially for large Y. Substitution of (4.15) into (4.12) and use of (4.5) yields the 
leading-order coefficient u1 in the small-x expansion for the as yet unknown shock 
location : 

a; = 3(1+6); (-1 2 ( y - 1 )  ' (t): y-1 1: dY/. 
4% ~ Y P ~ ~  

(4.18) 

The value a; = 2.7842533 was obtained numerically for our chosen parameter 
values: (7 = 0.509, y = 1.4, r = 1 .  

I 

4.5. The viscous adjustment layer 

The existence of this layer can be seen by considering the limiting forms of the 
temperature at the edges of the upper arid lower layers. First, from ( 2 . 2 4 ,  (4.2), 
( 4 . 3 ~ )  and (4.6) it follows that 

T - 7; - y p l ( x , O ) ? ( e ~ a ~ / ~ ) k  as $ + O .  (4.19) 

Second, as the top edge of the boundary layer is approached from below we see from 
(4.8), (4.10e), (4.11) and (4.13b) that  

T =We, ccM2/!P4 cc l/(AP@) as Y -f co. (4.20) 

Since (4.19) and (4.20) do not match, there must be an intermediate asymptotic 
region (cf. the temperature adjustment region of $2.2); this occurs where the scaled 
streamfunction, c, defined by 

g = $MA = $NA+l, with h = 9y/(6y- l ) ,  (4.21n, b )  

is order one. Unfortunately, because the power of M is a function of y ,  some of the 
following expansions are algebraically complicated. 

Examination of the small-& limit of the inviscid solution implies that the 
appropriate expansions in the adjustment layer are 

(4.22a-e) 

where we have anticipated the fact that  the leading-order contributions to v and p 
are independent of 5, and can hence be fixed by matching. When these expansions are 
substituted into the Navier-Stokes equations, and t,he energy equation is integrated 
once, we obtain in terms of Von-Mises coordinates 

- F I P l z + y ( l + c ) P l  a 1 3 0 ,  
u =-- r -(--), a< 2 a< 

lX YPI 
(4.23) 

PI = ( I  - y )  0,. (4.24) 

Equation (4.23) is a perturbation form of (4.12), and hence in this adjustment layer 
the high-temperature form of Sutherland's formula is still valid. This is in contrast 
with the shock-free adjustment layer where the full form occurred - see ( 2 . 1 0 ~ ~ ) .  

Again, a similarity form of these equations can be found for x 4 1.  Using (4 .54 ,  
(4.15), (4.17b),  (4.19) and (4.20) i t  follows that the appropriate similarity variable 
is s ,  defined by 

9 = x(n-3)/4 c/D,, where bf = (1  + 6) ya:p,,/r. (4.25a, b )  
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This is in agreement with Bush's (1966) result. Writing 

C;, = x ~ - ~ G ( s ) ,  (4.26a) 

and using (4 .54 ,  we find that the governing equation for the flow solution in this 
crucial region is 

(4.266) 

From ( 4 . 2 2 ~ )  and (4.26a), we expect that Gy < 0. 
As s + O  we find that C! has the asymptotic behaviour 

576y2 
G = - G , S - ~ + G ~ S - ~ + . . . ,  where G - (4.27a, 6) 

O - ( y -1 ) (3y -1 )2 '  

Thus the adjustment-layer solution matches onto the large-Y form of u. The 
coefficient C, must be determined from a numerical solution of (4.26b), but the 
parameter q satisfies a quadratic equation with coefficients that  are functions of y (in 
fact q < 1 if y > f). This quadratic equation, as well as the above expression for Go, 
is obtained by substituting ( 4 . 2 7 ~ )  into (4.26b) and then equating coefficients of 
the first two leading inverse powers of s. With y = 1.4 we find that Go z 275.6 and 
q a 0.6267, so that the correction terms are relatively small. 

For large s we find that 

where from matching with the inviscid solution in the upper layer, 

(4.28) 

(4.29) 

For the choices r = 1, y = 1.4 and = 0.509, we find A ,  z 0.744528 16. Note that G 
decays algebraically for large s. in contrast to the rapid exponential decay of both 
the Blasius function and the 'Modified Blasius' function (2.10c), which arise in the 
shock-free, far-downstream cases (the former after employing Chapman's law, and 
the latter from the use of the more realistic Sutherland's formula). 

Now that the leading-order base flow for this region has been identified, we can 
consider its stability characteristics. I n  particular we are interested in the linear 
stability of inviscid modes concentrated (trapped) within this adjustment layer. 

4.6. The vorticity mode in  the strong-interaction zonP 
The scalings for these modes appear complicated hut follow in a straightforward 
manner after applying the usual vorticity-mode arguments to  the flow field discussed 
above. In particular, we require that the modes should have wavelengths comparable 
with the physical thickness of the adjustment region, because that is where the 
generalized inflexion point occurs. A Rayleigh-style analysis using the stream- 
function as normal coordinate, rather than the related Dorodnitsyn-Howarth 
variable, suggests that we require a$+ - T 2 2 ,  where 6 is the streamwise wavenumber 
non-dimensionalized using L. From (4.21) and ( 4 . 2 2 ~ )  we have T - M4A-6 and 
9 -M-*-'. We deduce that 6 -M'-3A + 1,  which indicates that this is a short- 
wavelength mode. The timescale can be deduced by using the fact that vorticity 
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modes propagate in a frame moving with a velocity approximately equal to  that of 
the fluid in the adjustment layer - see (4 .22a) .  The appropriate 'fast' space and 
timescales which describe the dynamics of the instability are thus 

X = 2M7-3A(x- t ) ,  Z = W-3Azx, r = M"'t. (4.30 a-c) 

Since we wish to allow for the possibility that non-parallel effects are important, 
scaling (4 .30)  leads to the leading-order multiple-scales transformations 

a , + a , + ~ - ~ ~ a , ,  a , + ~ - ~ ~ a , ,  a,+MA-ia,-W-3Ada,. ( 4 . 3 1 ~ ~ - c )  

Non-parallel effects are O(a,) - O(l) ,  and are thus of higher order in comparison 
with the direct growth effects of magnitude &(u- 1 )  = 0(MA-l)  % 1 ( A  = 1.7027 
for our choice of y = 1.4). To be consistent with (4.30) and (4.31) we require that 
(c- 1 )  = O(u- I), and thus the wave speed is expanded as 

c = I + t/&!f4-4) + . . . , (4.32) 

Now that the scales have been deduced, the remainder of the analysis follows the 
classical inviscid-mode approach for formulating the pressure equat,ion describing 
linear wave-like disturbances. We perform a normal-mode analysis, and assume that 
the infinitesimal pressure disturbance, 9, is such that 

> (4.33 a )  ,j ei(aX+flZ-aR) 

where for algebraic simplicity we have redefined the wavenumbers CI and /3 in 
comparison with (2.11). Estimates similar to those above show that in the 
adjustment layer the scales for the perturbation velocities, temperature and density 
are 

(G, 6, $1 = o(wp), F = 0 ( ~ 4 , j ) ,  p" = O(JP-S~~) .  (4.336) 

After substituting these perturbations into a linearized version of the full equations 
(2.2), and assuming that y < $, some lengthy manipulation yields a simplified 
Rayleigh equation for the amplitude of the disturbance pressure, @ = $(x, 5) : 

(4 .34)  

where k2 = az+,P, and fi decays to zero for large and small 5. This equation, which 
describes short-wavelength vorticity modes a t  any location x in the interaction zone, 
could have been immediately deduced from the compressible version of Rayleigh's 
equation ; however, without the lengthy substitution performed above there would 
have been no guarantee that it was an asymptotic approximation. Rather than 
compute numerical solutions of ol for x = 0(1), we again chose to consider the 
strong-interaction limit x 6 1. 

From (4.54, (4.25) and (4.26a) the appropriate small-x dependences for c  ̂ and k are 

(4.35a, b )  

These lead to the following vorticity-mode equation for the pressure in the strong- 
interaction zone (cf. ( 3 . 4 ~ ~ ) )  : 

(4.36) 
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x 
FIGURE 9. The growth rate, X I m  (U) ,  of the vorticity mode in the strong-interaction region as 

a function of the wavenumber X .  

This is to be solved subject to 5 = $(s) vanishing in the limits s +- 0 and s +. co, so that 
the disturbance is again confined to the adjustment layer. The leading-order 
asymptotes are found to be 

(4.37a) 

(4.37 b )  

where $o and are constants. Higher-order terms in these expressions can be found 
analytically, and are needed for accurate numerical solutions. We discuss our 
numerical results, and the asymptotic solution for small wavenumber, in the next 
section. However, we note from (4.35) that 

kt X(*-5)/4 = x&% +. 00 as x -f 0. 

Hence, the fastest growing modes occur infinitely close to  the leading edge of this 
scale. Of course, in practice it may not be feasible to excite such short-wavelength, 
high-frequency waves. 

5. The solution of the strong-interaction vorticity-mode equation 

evaluated at the generalized inflexion point where 
First we consider the upper-branch neutral mode; V is then real and equal to G 

GC,, = 2Gi. (5.1) 

A numerical solution to (4.26b) using a Runge-Kutta method shows that for 
y = 1.4 this occurs when 8 x 1.661432, where the new variable 8 = Ins was 
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In (s) 
FIGURE 10. The complex eigenfunction of the most dangerous mode in the strong-interaction 

limit, The solid line corresponds to the real part for the normalization chosen here. 

introduced to stretch the coordinate in the small-s region where G and @ vary rapidly. 
The resulting neutral wave speed is given by V z -0.633318. The corresponding real 
wavenumber X is obtained from a numerical solution of (4.36) using a method 
similar to that outlined in $3.1. The neutral wavenumber was calculated to be X z 
0.477 957, These numerical results are for y = 1.4 ; note that G, and hence solutions 
to (4.36), need to be re-computed for each choice of y. 

The strong-interaction vorticity-mode equation (4.36) was also solved using a 
Runge-Kutta method; for a fixed, real value of X ,  we iterated on the value of 
complex V until the boundary conditions (4.37) were satisfied. Figure 9 shows the 
(temporal) growth rate for two-dimensional waves, Im ( X V  ), plotted against X for 
y = 1.4, 6 = 0.509, r = 1 .  Observe that the maximum (temporal) growth rate, 
Im ( X V )  z 0.060918, occurs a t  X w 0.156 100, and that the growth rate goes to zero 
as the wavenumber goes t o  zero. Figure 10 illustrates the complex eigenfunction of 
the most unstable mode, including the exponential decay of the eigenfunction a t  
both ends of the range of integration. The spatial growth rates are identical to the 
temporal values - see the previous discussion in 3 3.1. 

We now deduce the asymptotic structure of the strong-interaction inviscid mode 
as the wavenumber tends to zero. Rather than going into the detail of $3, we simply 
give the structure corresponding to the small-wavenumber limit of the present 
scaling (cf. $3,1) .  This is sufficient to illustrate an important dependence on y .  

5.1. The small-X behaviour 
Numerical solutions of the pressure-amplitude equation, (4.36), indicate that for 
y = 1.4, %? increases as X tends to zero; similar behaviour was found for the far- 
downstream problem studied in $3. I n  this subsection we deduce the leading-order 
behaviour of %?, as X+O, using scaling arguments. Such scaling arguments wer: 
employed by the authors when deducing the expansion (3.9). In  fact, the small-k 
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problem considered in $3.1 is very similar to the present problem; the former can be 
thought of as a special, simpler case of the latter, corresponding to  the mathematical 
limit y + co , after the appropriate rescalings. 

We begin by noting that although the WKBJ asymptote (4.376) is valid if s is 
sufficiently large, for small X this form breaks down in a ' turning-point ' region when 

s N X-65 9 1. 
In this region we define 

$ = X & s ,  $ =Po($)+ ... . 
(5.2) 

(5.3a, b)  

Using the large-s asymptotes for G, (4.28), it follows that Po satisfies 

Pooli -At $-&Po = 0. 

Po = (4-4, ")"D0$kv(2A0  v&, 

(5.4) 

(5.5a) 

This equation has an analytic solution involving the modified Bessel function K,: 

where 3Y v =  
2(3y-2) ' 

(5 .5b )  

and Do is an arbitrary constant. From the series expansion of the modified Bessel 
function, e.g. Abramowitz & Stegun (1964), we have that as $ + O  

where r is the Gamma function. The ordering of the second and third terms is 
dependent on the value of y .  For y = $, i.e. v = 1,  the powers of $ of these terms are 
equal, while their coefficients are singular; this indicates the presence of a logarithmic 
term which requires special treatment. 

As + 0 the expansion (5.3) continues to be valid until contributions from the term 
proportional to $, in (4.36) become significant. The scaling in this region can be 
deduced by analogy with the corresponding analysis of 8 3.1, In particular we expect 
$? ,> 1 as X + O ,  and that s - Wd in the new asymptotic region (see (4.27) and 
(4.36)). The appropriate scalings are 

(5.7a-c) 

where s  ̂< 1, X2&g < 1, and the form of the expansion for 1; follows from the 
condition that (4.36) simplifies to an equation equivalent to (3.12 b) .  Substitution of 
(5.7) into (4.36) and use of (4.27) yields 

As before this can be integrated to give 

where the constant D, is fixed by matching to the @ = O( 1) fegion. A straightforward 
match is possible only if y > 4, and consistent choices of 6 and D,  are then 

(5.10a, b )  
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The eigenrelation for 9 is fixed by considering a further region where s = O ( X i ) .  
The details are identical to those of region IV in $3.1,  and lead to the condition that 
pIg+O as y+O. From (5.9), (5.10b), the eigenrelation for @is  thus 

where as in (3.13) the unique root with Im (@J > 0 has been chosen. This corresponds 
to an unstable mode of (4.36) such that the complex frequency, %?A?, tends to zero 
as X decreases. 

The above derivation only holds if y > $. If y = $, then v = 1 ,  and the small-$ series 
(5.6) is replaced by a formula including logarithms. However, an analysis leading to 
(5.11) can still be carried out if (5.10a) is replaced by 

1 +o( (logX2)2 . 
1 log ( -log x - 2 )  a=--..-- 

log 3f-2 
(5.12) 

Strictly, modifications in the same spirit are necessary if (y-4) = O( -logX2)-’. 
If y < $ then the solution (5.5) for $ = O( 1) is still correct; however, it is no longer 

appropriate to assume that V is large. Therefore, for s = O(1) we try the expansions 

v = y+..., 1; = l +  . . .+X2&+.. . ,  (5.13a, b )  

which lead to the governing equation 

( 5 . 1 3 ~ )  

If the solution to this equation is to match both with that for y = O(1), and the 
solution in the s = O ( X 4 )  layer (region IV), then the eigenrelation 

(5.14) 

must be satisfied. A numerical solution of (5.14) for a typical value of y = 1.1 (< $) 
determined V1 = (-0.06226, 0.1343), which was found to be in close agreement with 
the small-X behaviour of the solution to (4.36) and (4.37) for the same value of y. 

Although the above asymptotic solutions for small X have been derived for the 
small-x pressure equation (4.36), similar expansion can be obtained for the x = O(1) 
Rayleigh equation (4.34). 

5.2. Lurge-wavelength vorticity modes 
A natural question to ask is : how is the above asymptotic solution modified when the 
wavelength becomes sufficiently long that a new physical effect needs to  be 
included ? One possibility is that once the modes become comparable in length with 
the thickness of the boundary layer, and hence with the inviscid layer, a resealing in 
the spirit of $3.2 is necessary - but additionally including the direct effect of the 
shock (see Brown et al. 1991 for a particular limiting case). Another possibility is that 
neglected non-parallel effects come into play (cf. Smith 1989 ; Blackaby 1991 ; Brown 
et al. 1991). However, it turns out that a t  least for y > 6 neither of these physical 
effects is the first that needs to be included as the wavelength increases. Instead, 
scaling arguments indicate that once a - M - W ,  the x-derivative of normal 
blowing velocity, (4.14), can no longer be neglected as far as the calculation of the 
leading-order eigenvalue is concerned (in our earlier calculations the blowing velocity 

7 3 -2  8-3 



The instability of hypersonic $ow past a flat plate 399 

could be shown to be asymptotically negligible as far as the instability analysis was 
concerned). Moreover, it turns out that the eigenfunction is significantly altered 
before a becomes this small. 

A full examination of this new effect will be given elsewhere. Here we outline 
aspects of the analysis, indicating how for y > $ the blowing velocity changes the 
growth rate at leading order. In this subsection we choose to consider the temporal 
stability case for the sake of simplicity. Unfortunately, while it is easy to identify the 
new physical effect that needs to be included, the analysis leading to the correct 
growth rate is algebraically rncssy - partly because the full flow is described by six 
asymptotic regions. However, as far as the instability analysis is concerned, the four 
main regions are just scaled versions of those illustrated in figure 4. 

Scaling arguments suggest that in all the regions it is appropriate to redefine the 
'fast' variables as (cf. (4.30)) : 

X =M%%(x-t), =Jf%%z, 7 = J f B t .  (5.15 a-c) 

In layer I, we introduce a scaled coordinate 

6 = Jfe$, (5.16 a )  

while the velocity, density, temperature and pressure expand as follows : 
2 16-a - 

(u,w, w,p)  = ( l - ~ - ~ A o $ - ~ , M - ~ v l , , o , ~ - ~ z J l ) +  ... 
+ M A (  oo, Po, Po, M-d%po) + . . . , (5.16 b)  

(5 .16~)  

where the first terms are the steady flow contributions, the circumflexed variables 
describe the linear unsteady perturlnation, 

(p, T )  = (M-&y( y - l)-lA;'Pl @ , M A (  y - 1 )  xo 6-6) + . , . + (M*BO,N*PO) + . . . , 

We also assume that the rapid variation of the unsteady perturbation has a WKBJ 
form ; hence to leading order 

Oox = iaOo, Ooz = ipOo, GOT = -ia6O0, etc., (5.17) 

where a, /3 and c  ̂ are functions of the slow variable x. On substitution into the 
governing equations (2.2) the leading-order equation for the linear pressure 
perturbation is found to be 

where V;, is the x-derivative of V,, - from ( 4 . 5 ~ )  and (4.14) this is negative for small 
5,  and is expected to be so for all x. Equation (5.18) is analogous to (5.4), which is 
recovered on setting V;, = 0 except for scaling factors. We discuss the solution of 
this equation after deriving the governing equations in the other layers. 

In layer IV, the appropriate normal coordinate is 

= M W $ ,  ( 5 . 1 9 ~ )  

while the velocity, density, temperature and pressure expand as : 

(u , v ,w ,p )  = ( i - ~ - ~ ~ o ~ - 4 , ~ - 1 ~ ~ , , o , ~ - 2 ~ l ) +  ... +w(d,~,zir,~-y)+ ..., 
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(5.19 b )  
(p ,  T )  = (Lv-Wy(y - 1 )-lg;lpl &tf%?P(y - I go i - 4 )  + . . . + ( x W ; , M ~ P )  + . . . . 

(5.19c) 
The governing equation for the pressure perturbation p is found to be 

(5.20) 

Except for a resealing, this is ( 3 . 1 2 d ) .  
The scalings in layer I11 are 

f =  M%%$-, (5.21 a )  

( u,  u ,  w) = ( 1 - -M-&J~~ [-4, ~ - 1  v, 41 + M-%%,, 0 + . . . 
+(Mz(C,+ . . .+~tZ~) .M*( i7~+ . . . + ~ ~ , ) , M ~ ( z 5 ~ + . . .  +eG,))+ ..., (5.21b) 

p = M - T ,  + . . . +& + . . . + €fjl + . . . + 2 p 2  + . . . , 
(p,7') = ( ~ ~ - ~ ~ ( y - l ) - ~ g ~ ~ ~ , ~ , ~ ~ ( y - i ) g 0 ~ ~ 4 ) + ~ , ~  

(5.21 c) 

+ (M&(po + . . . + €p",).M4(!r0 + . . . + B P I ) )  + . . . , (5.21 a) 
where Foe = 0, 6 =Jf-%+. (5.21 e )  

Strictly, further terms should be included both ( a )  in the steady part of the 
perturbation series arising from the expansion for asymptotic small values of 
7 = O ( M - w )  of the adjustment layer function, (see (2.10c)), and ( b )  in the 
unsteady part of the series due to a variety of forcing terms. I n  addition, the scaled 
phase speed, 6, and wavenumbers, a, 1, should also be expanded in powers of B, etc. 
However, we believe that the terms retained are those which yield the correct 
leading-order secularity condition. 

On substituting into (2.2), we find after some manipulation and matching with 
layer IV that 

(5.22a) 

while 

where the precise lower limits in the integrals are not needed in order to determine 
the leading-order eigenvalue. 

I n  region I1 the expansions are very similar to  those above. On writing 

p =M-'P1+ . . . + l j 0 + . . . + e @ , + . . . ,  ( 5 . 2 3 ~ )  

we find after some algebraic manipulation, and matching with layer 111 using 
(5.22a),  that  

(5.233) 

where is the steady temperature field as given by ( 3 . l h ) .  
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The eigenvalue problem is now fixed by matching with layer I. We find that the 
pressure perturbation in this layer must satisfy t h e  governing equation (5.18). 
together with the boundary conditions 

PO+0 as i + c o ,  ( 5 . 2 4 ~ )  

where 

(5.246) 

( 5 . 2 4 ~ )  

I n  general this appears to require a numerical solution. However, it is easy to 
verify that as a+ 00 the eigenvalue (5.11) is recovered. It is also possible to recover 
an asymptotic solution as a+O. To this end we introduce the scaled coordinate 

y = A-lqJ, (5.25 a )  

where 

and for definiteness 
a r g ( q m )  = z, 0 < arg(2) < n. 

The governing equation then becomes 

with boundary conditions ( 5 . 2 4 ~ )  and 

where 

(5.25b) 

(5.25c) 

(5.25d) 

(5.25e) 

(5.25J 

As a, p+-0, it can be confirmed from (5.27) that a4t44/(a2+/P)+0, and hence the 
appropriate solution to (5.25d) that decays exponentially a t  infinity for the choice of 
arguments specified by ( 5 . 2 5 ~ )  is 

(5.26) 

where we have now set v = 2/(3y-2). From matching with (5.25e, f )  it follows from 
the small-? expansion of K ,  that 

If 2 < y < 9 (in fact if 1 < y < Y), this has a unique solution for i3 satisfying ( 5 . 2 5 ~ ) .  
Again, as in $5.1, it is possible to examine the small-x limit of this eigenrelation, 

and to recover numerical values. However, we believe that the major contribution of 
this part of the analysis is to emphasize that the (gradient of the) blowin velocity 
can have a dircct impact on the instability waves for modes with an O(B%%) growth 
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rate. From (4 .30~)  and ( 5 . 1 5 ~ )  we see that such modes have a smaller growth rate 
than the fastest growing modes by a factor o f M - w ,  i.e. M-0.54 for y = 1.4. We 
emphasize that because the effect of the blowing velocity is not allowed for in the 
compressible Orr-Sommerfeld or Rayleigh equations, its necessary inclusion here 
indicates that analyses based on these classical equations, e.g. quasi-parallel stability 
analyses of solutions of the parabolized compressible, Navier -Stokes equations, may 
produce erroneous results. 

Finally, we note that these modes have wavelengths much larger than the 
thickness ofthe adjustment region, but much less than the width ofthe inviscid layer 
or the boundary layer. The behaviour of these modes when they have wavelengths 
comparable with the thickness of the boundary layer, so that they can interact with 
the shock, is a matter of current study. However, since these modes have growth 
rates significantly less than that of the fastest growing mode they might not be 
excited in a practical situation. 

n + z  8-8 

6. Summary and numerical comparisons 
The primary aim of the present paper has been to investigate aspects of the 

inviscid instability of hypersonic boundary layers without making some of the 
assumptions which might lead to important aspects of the instability structure being 
overlooked. In particular we have attempted to  determine the effects of both a 
realistic viscosity law and the presence of shocks on a particular class of instability 
wave, although we have neglected real-gas effects and have made the simplifying 
assumption that the Prandtl number is equal to one. The Sutherland viscosity law 
used is thought to be more appropriate than Chapman’s linear viscosity law at the 
high temperatures relevant to a hypersonic boundary layer, whilst shocks are usually 
present in hypersonic flows of practical importance. The inviscid modes discussed 
are, for the most part, associated with the generalized inflexion point of the basic 
flow. For instance, the upper-branch neutral mode of the most rapidly growing 
disturbance has a wave speed equal to the flow speed a t  the generalized inflexion 
point. 

In $ 3  we solved the inviscid instability problem for a hypersonic boundary layer 
far downstream of any shock; Grubin & Trigub (1993a, b )  have independently 
carried out a closely related study. As in SR we found that the most unstable 
disturbance is a so-called ‘vorticity mode ’ with wavelength comparable with the 
thickness of the temperature adjustment layer. This mode is destabilized by wall 
cooling, and an oblique mode has a smaller growth rate than a two-dimensional one. 
As the wavenumber is reduced, the growth rate decreases and the disturbance 
velocity fields spreads out from the adjustment layer. When the wavelength is 
comparable with the thickness of the viscous boundary layer, the eigenfunction of 
the instability mode is distributed throughout the boundary layer.? At a sequence of 
eigenvalues (at  which neutral acoustic modes can be found), the growth rate 
decreases significantly; it is this phenomenon that is responsible for the local maxima 
in growth rate identified by Mack (1969). I n  the neighbourhood of the eigenvalues, 
the precise form of the dispersion relation depends on the size of a constant, do,  
associated with the solvability condition for (A 7c) .  

t Mack (1969, 1984, 1987) refers to such modes as acoustic modes. In order to distinguish 
between the two different types of acoustic modes, i.e. those described in 93.2 and the very small 
growth-rate modes discussed in the Appendix, we refer to the acoustic modes of $3.2 by the 
asymptotically equivalent title of long-wavelength vorticity modes. 
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FIGURE 11. Neutral curves for modes propagating at the same velocity as fluid at the generalized 
inflexion point (-), and the asymptotic limit of the neutral, upper-branch vorticity mode (-.-). 
(a)  Insulated wall. Asymptotic prediction of the neutral acoustic modes from (3.15b) (- ---). (b )  Wall 
cooled to the free-stream temperature. 

One possibility is that close to these eigenvalues another mode exists (e.g. see 
figure 15 (a) in the Appendix, and the curve between a,, and asl in figure 9 (a) of Mack 
1987). While this mode has a growth rate comparable to the long-wavelength 
vorticity mode in the neighbourhood of the eigenvalues, the long-wavelength 
vorticity mode has a significantly larger growth rate away from the eigenvalues. 
Another possibility is that  there is no second distinct mode in the neighbourhood of 
the eigenvalues, but that  the long-wavelength vorticity mode terminates and restarts 
as a neutral mode (see figures 15b and 15c, and the curves emanating from a,, and 
aS2 in figure 9(a)  of Mack 1987). 

As the wavenumber decreases further the growth rate of the two-dimensional 
vorticity mode increases again (but see Qrubin & Trigub 1993b for the case of 
sufficiently small Prandtl numbers). For even smaller wavenumbers, a lower-branch 
neutral mode can be found which has the form of a non-decaying sound wave far 
from the wall. For sufficiently oblique waves, a match with the smaller-growth-rate 
Tollmien-Schlichting waves can be achieved. For these modes viscosi ty  cannot be 
neglected and the disturbance flow field takes on the structure given by Smith (1989) 
and Gajjar & Cole (1989). 

I n  order to  compare our high-Mach-number, asymptotic predictions with finite- 
Mach-number calculations we have solved Rayleigh’s equation ( 2 . 1 2 ~ ~ )  using two 
independent numerical schemes for basic flow solutions to (2 .5)  and (2.7) with 
y = 1.4 and 6 = 0.509. In  figure 11 we have plotted the neutral curves for modes 
propagating at the same velocity as fluid at the generalized inflexion point for both 
an insulated wall and a wall cooled to the temperature of the free stream. In  figure 
11 (a) the dashed lines represent the eigenvalues for neutral acoustic modes as given 
by (3.15b) ; as in CH there is excellent agreement between the asymptotic theory and 
the numerical solution for the neutral acoustic modes. The (discontinuous) rising line 
in both figures is the upper-branch neutral curve for the vorticity mode. From 
beneath (3.76), and accounting for a factor of 4 2 ,  we see that i t  should tend to 
0.456 130 for largeM (marked as a dash-dot line on the right-hand side of the figure). 
Clearly the agreement is not outstanding (eapecially in the case of figure 11  a), with 



404 N .  D. Blackaby, S .  J .  Cowley and P. Hall 

0 4 8 12 16 20 
M 

FTCHJRE 12. Neutral curves for modes propagating at the same velocity as the freestream. 
Insulat,ed wall. Asymptotic prediction of the neutral acoustic modes from (3.15b) (---). 

the trend being in the wrong direction a t  M = 20, i.e. past the upper limit at which 
real-gas effects, etc., should probably introduced into the analysis. The difference 
between the asymptotic and numerical results is in fact comparable with that 
obtained for Chapman’s law if only the leading term in the asymptotic expansion is 
used. 8B obtained improved agreement by taking further terms in the asymptotic 
series. Such an approach is not pursued here, although we note that the discrepancy 
may arise because the asymptotic steady solution does not predict the position of the 
generalized inflexion point very accurately. For instance, in the case of the insulated 
~ d l ,  the inflexion point for M = 20 is a t  7 = 2.536 compared with the large-M 
asymptotic value of 7 = 2.270. Moreover, that  M = 20 is too low to pick up the full 
asymptotic structure (at least for the insulated wall) is indicated by the fact that the 
lower neutral branch (i.e. a - 111M-t from $3.4) and the asymptotic eigenvalue of 
the lowest neutral acoustic mode (i.e. a - 2.47M-1 from $3.2) are only correctly 
ordered for M > 44.9. 

Figure 12 is a plot of the neutral curves for modes propagating at the same velocity 
as the free stream for an insulated wall. The dashed lines represent the eigenvalues 
(3.15b); again there is excellent agreement between the asymptotic theory and the 
numerical solution. 

In  figure 13 the growth rate is plotted against wavenumber for the most rapidly 
growing temporal mode. Figures 13 (a )  and 13 ( b )  are for an  insulated wall, and a wall 
cooled to the free-stream temperature, respectively; in both cases M = 20. Figure 
13(c) is for an insulated wall at M = 14. The growth rates of seven other modes have 
also been plotted in figure 13 ( a )  ; these modes are close to the neutral-acoustic mode 
wavelengths given in figures 11 (a )  and 12, but the growth rates are so small that the 
curves do not show up on the figure. The dashed curves in figure 13 (a-c) are scaled 
versions of figure 2. 

From figure 13(a) it appears that  for an insulated wall the most rapidly growing 
mode a t  M = 20 is essentially the vorticity mode; we conclude that the analysis of 
93.1 captures many of the important features of the instability. However, the wall 
temperatures are unrealistically high in this case for the result to be physically 
useful. Further, the Mach number does not seem to be sufficiently large for there to  
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be the clear separation of scales illustrated schematically in figure 7. As a result, the 
overlapping acoustic modes reduce the maximum growth rate, and there is no clear 
non-acoustic mode minimum (33.3). There is also no lower branch neutral mode a t  
a finite wavenumber ($3.4); instead 

c + l - i / M  as a+O. (6.1) 

A small-wavenumber asymptotic analysis of such neutral sonic modes was given by 
SB. As there, we anticipate that such a struct,ure can only hold for finite Mach 
numbers, and that at  sufficiently large values ofM the structure of $3.4 is recovered. 

The quantitative agreement between the asymptotic analysis and the numerical 
results is less good in figures 13(b) and 13(c), However, the qualitative agreement 
suggests that the asymptotic analysis has captured key features of the physics. 

7. Discussion 
The result that the temperature adjustment layer is the site of the most rapidly 

growing inviscid disturbance is consistent with the observation that transition is 
initiated in the outer part of a hypersonic boundary layer (e.g. Pischer & Weinstein 
1972). Moreover, a vortex-wave-interaction calculation with the vorticity wave as 
one of the components (cf. Hall & Smith 1991 ; Blackaby 1991) may describe the 
rope-like structures observed at the boundary-layer edge. 

Regarding numerical calculations, the fact that the most unstable mode is 
concentrated in the physically thin adjustment layer suggests that i t  will only be 
possible to describe the structure of this mode if the basic steady flow is known to 
high accuracy. In addition the concentration of the disturbance in the adjustment 
layer is in line with the work of Fu et al. (1990) for Gortler vortex instability of 
Sutherland-law, hypersonic-boundary-layer flow over curved walls. In  that problem 
it was shown that a hypersonic boundary layer could support modes associated with 
the wall layer and the temperature adjustment layer. The fastest growing mode was 
shown to be concentrated in the adjustment layer and described at zeroth order by 
quasi-parallel theory; in fact the most unstable type of Gortler vortex is inviscid and 
has a growth rate larger than that of the vorticity mode. The wall-layer mode for 
Giirtler vortices is controlled by non-parallel effects unlike its counterpart, the 
‘acoustic ’ mode, discussed here. 

The other likely cause of transition in a compressible boundary layer, i.e. 
Tollmien-Schlichting waves, can only occur when they are three-dimensional and 
propagate outside the Mach-wave cone (Smith 1989). Furthermore these waves are 
largely uninfluenced by the temperature adjustment layer because Tollmien- 
Schlichting waves are induced by viscosity in a thin layer located at the bottom of 
the wall layer. Since the growth rates associated with the vorticity mode discussed 
here, and the Gortler mode discussed by Fu et al. (1990), are larger than those of the 
Tollmien-Schlichting waves, it seems likely that transition in hypersonic boundary 
layers will occur first in the temperature adjustment layer - that is assuming that the 
receptivity mechanism generating the instabilities in the adjustment and wall layers 
produces comparable amplitudes for the different modes. That might not be the case 
if wall roughness plays a significant role in the process. 

Given that the asymptotic analysis for the vorticity mode seems to pick up t h e  
dominant instability features, we have examined the instability to such disturbances 
ofthe steady flow in the strong-interaction region near the leading edge. Our results 
are the first to  show the influence of the attached leading-edge shock on such an 
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inviscid mode in the strong-interaction region. We find that while the shock is too far 
away from the adjustment layer to  have a direct effect on the most rapidly growing 
mode, its influence is felt through the basic state which is fundamentally altered by 
the presence of the shock. 

While the vorticity-mode eigenvalue problem was formulated in the region where 
the hypersonic interaction parameter is O( l ) ,  it was not solved there. This is because, 
to the authors’ knowledge, the basic flow in this regime has not been calculated 
numerically despite having been formulated some years ago (e.g. Luniev 1959). 
Instead we chose to consider the strong-interaction regime where a similarity 
solution for the basic state is available. However, once the recent numerical 
calculations by Brown et al. (1991) for the full interaction problem are modified to use 
the Sutherland formula, rather than Chapman’s law, then it will be relatively 
straightforward to extend our calculations to the O( I )  interaction region. 

Our analysis for the strong-interaction-problem vorticity mode showed that, a t  a 
fixed x-station, a fastest growing vorticity mode exists for a finite value of the 
wavenumber when the latter is scaled on the adjustment-layer thickness. In  $5 we 
derived the small-wavenumber form of this mode. For sufficiently small wave- 
numbers we find that the correct growth rate is only recovered if the normal velocity 
component of the basic state is included in the analysis. Moreover, this occurs both 
before the direct influence of the shock is felt, and before the ‘acoustic’ modes are 
recovered. This suggests that near the leading edge, a stability analysis based on the 
compressible Orr-Sommerfeld equation could be misleading, since important terms 
related to the non-zero, steady velocity normal to the plate are conventionally 
omitted from this equation. 

Recently Malrnuth (1991) and Brown et al. (1991) have looked a t  the possibility 
tha t  the inviscid flow adjacent to the shock can itself be unstable. Malmuth (1991) 
studied disturbances with streamwise lengthscales comparable with the length of the 
steady interaction region, while Brown et al. (1991) considered disturbances with 
streamwise lengthscales comparable with the width of the shock layer (but also 
accounting for a slower spatial development). In both papers the wall and adjustment 
layers are assumed to be passive, even though it is not immediately clear that  such 
an assumption is justifiable since the disturbed flow persists in these regions. As a 
result of that assumption, the modes described in the present paper are specifically 
excluded from both analyses. 

However, instabilities which owe their origin to the existence of the shock may be 
important and should be studied. This is especially so in flows where highly curved 
shocks are present as a result of flow around blunt bodies; there must be intentional 
blunting of the leading surfaces in hypersonic vehicles due to heat transfer 
considerations. We note that Reshotko & Khan (1979) have considered the stability 
of laminar supersonic flow over a blunt plate. Based on experimental results for the 
location of transition, they considered the  stability problem far downstream from the 
nose of the body. They attempted to assess how the flow instability depends on the 
ratio of the local boundary-layer thickness to the radius of the nose. In our notation 
(see the end of fj l ) ,  they essentially considered a ‘weak’ hypersonic limit ; for example 
the scaling R = O(Mx)  where the non-uniform part of the inviscid layer is absorbed 
into the boundary layer. I n  contrast we have considered instabilities in the strong- 
interaction zone. In  particular, for a flat plate we have demonstrated the existence 
of disturbances further upstream than those considered by Reshotko & Khan (1979) 
for a blunt plate. We believe that it should be relatively straightforward to modify 
aspects of our analysis in order to consider a blunt plate, or even a blunt cone. 
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However, until this is done we are unable to  properly compare our theory with the 
results of Reshotko & Khan (1979). 

Finally we make a few remarks about how the results of the present study should 
be interpreted with respect to any experimental investigation of transition in a 
hypersonic boundary layer. Firstly, we note that both the spatial and temporal 
instability problems have been treated. Unless the instability is forced over a 
significant streamwise extent we expect that the spatially growing modes would be 
the ones excited. Secondly, while we have not addressed the receptivity problem, for 
a broadband disturbance we expect the most unstable mode, i.e. the vorticity mode, 
to  lead to transition. However, there may be circumstances in which the excitation 
frequency does not match the frequency of the vorticity mode. For this reason we 
have mapped out the asymptotic structure of the instability modes over a wide range 
of frequencies and wavenumbers. I n  particular, because the most rapidly growing 
vorticity mode decays exponentially away from the adjustment layer, in an 
experiment where disturbances are stimulated near the wall i t  could be that longer 
wavelength (lower frequency) modes which extend to the wall are preferentially 
excited to the extent that the most unstable modes never reach a critical amplitude 
before transition occurs. Presumably this is one of the reasons why Goldstein & 
Wundrow ( 1990) studied the nonlinear evolution of near-neutral acoustic modes, 
even though they have significantly smaller growth rates than the neighbouring 
vorticity mode (but see also the comment a t  the end of the Appendix and the recent 
paper by Wundrow 1992). Thirdly, we note that the instability problems for different 
locations downstream have been treated in isolation from each other. We are able to 
do this because the temporal and spatial scales for the disturbances in the different 
regions are different ; hence i t  is only necessary to  look a t  the instability problem for 
a wave of a given frequency in a region where it is potentially unstable. In an 
experiment where many possible frequencies are available through the background 
disturbance field, transition will probably be caused by the disturbances that are 
amplified closest to the leading edge. 
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Appendix 
I n  order to examine the structure of the long-wavelength vorticity mode in the 

neighbourhood of the eigenvalues (3.156), we expand the wavenumbers (a, p)  in the 
form 
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where (a,*,/3$) are an eigenvalue pair of (3.14b); c still expands as in (3.15a). We 
begin by determining the temporal growth rate when the wavenumber perturbation 
(a:, ,8T) is non-zero. In  the wall layer j3 expands as 

@ =i@Q0+ . . . + Q 1 +  ..., (A 1b) 

where we have anticipated the possible occurrence of further terms between Q, and 
Q1. For instance these might include scaled multiples of Q, forced by higher-order 
terms in the expansion for the mean velocity; however, for our purposes it is not 
necessary to calculate them here. If we substitute (A 1 b )  into Rayleigh's equation we 
see that Q, satisfies (3.14b) with (a,P) = (a,*,p,*); in addition QA(0) = 0, whilst 

Q, - q06-' for 6 %- 1; (A lc) 

go is a constant which, without any loss of generality, can be set equal to unity in 
order to normalize the eigenfunction Q,. A t  higher order in Rayleigh's equation we 
find that Q1 satisfies 

= ($(a: at -I- P: P,*) (7 - I)'( Tb + Go)'( 1 -a,)' - a:(7- 1) (Tb + a,) (1 Qo. 
(A 1 4  

The homogeneous version of this equation, together with the conditions that Qi(0) 
= 0 and Q1 + 0 as f; + 00, is simply the eigenvalue problem for (a,*, p,*) ; it  follows that 
the inhomogeneous equation for Q1 can only be solved if we now relax the condition 
on Q1 a t  infinity. The appropriate solution of this equation which has Q ; ( O )  = 0 is 
such that 

Q 1 ~ Q l o o  for 6 %  1, 
where Qlm is a constant to be determined. If we denote the adjoint of Qo by Q: it 
follows that Qlm is given by 

Q i m =  r (% + a,) ( 1 - G 0 ) ' ( ( 4  a,* + PT a,*) (Y - 1 ) (7; + a,) - 2a: at(  1 - a,)) Qo Qi d6 

J ( Tb + ao) ( 1 - a0)' (( a,* + P,* ') (y - 1 ) (Tb + a,) - 2a,* ( 1 - a,)) Q; d6 
0 

We have not computed Qlm ; however, because the eigenfunctions Qo have 
successively more oscillations in (0, co) as a,* increases, we anticipate that for given 
(a:, PT), Qlm can be both positive and negative and will tend to zero when a,* becomes 
large. 

For the scaling specified by (A l a ) ,  region I11 of figure 4 has depth q = 0(M-A). 
The solution in this layer is calculated using the procedure outlined at the end of 
$3.1 ; the only significant change is that in matching regions I11 and IV  we must now 
account for the fact that Q, - g-' for large 6 ,  After some manipulation we find that 
the eigenrelation obtained when this matching has been carried out is 

14 FLM 247 
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where 
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FIQURE 14. The real (---) and imaginary (--) parts of the solution of 
(A 2) for -20 < QIm < 20. 

1 

For a given real value of Qlm, this equation can be solved for t l;  solutions are 
illustrated in figure 14. As expected by matching requirements, approaches (3.13b) 
for large values of [olwl, while for small values of elm, t1 tends to zero. More precisely 
from (A 2) we find that for small 

so that, depending on the sign of Qlm, the growth rate goes to zero like @mM-g or 
QYmM-E. This behaviour is illustrated in figure 14 where we see that the slopes of the 
curves are discontinuous at the origin. This discontinuity can be smoothed out by 
considering an inner region. Indeed, we note from (A 3) that when (a - a:, P- P,*) = 

O(MG), then (1 - c )  = 0(P2) ; this turns out to be the appropriate scaling for almost 
neutral acoustic modes. 

An asymptotic description of almost neutral acoustic modes has been given by CH 
and SB. Here we outline the analysis indicating the modifications due to the use of 
Sutherland’s formula; in addition we identify the exact relationships with the long- 
wavelength vorticity mode. 

For the almost neutral acoustic-mode scaling it is appropriate t o  expand the 
wavenumbers as 
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where the second term is forced by higher-order corrections to the mean flow, and 
only those terms we require have been displayed. In order to simplify the analysis we 
also slightly modify our definition of &, etc., so that (cf. (3.15a)) 

In the adjustment region, the velocity, temperature and pressure perturbation 
expand as 

T =  (1-G)+ ...- G,/&+ ..., @ = P o +  ...+ PI/&+ ...+ PJW+ ..., 
(A 5694 

where the terms involving s, are included for maximum generality. On substituting 
into (2.12a) and solving the resulting equations we find that Po is a constant, and 

I'; = - ( I / fq)  (ao*2+/!?~2)qG-~l)2Fo, (A 6a) 

where 
where q = O(@)) .  

has been matched with the outer region where 13; decays exponentially (i.e. 

In  the high-temperature region where ,$ = O ( l ) ,  the mean flow expands as 

u = aO+%JMw+@.J2M2+ ..., 

13; =M2Qo+ ...+2M3*Q1+...+Qz+...+Q3/i@+... . 

(A 7a) 

while the appropriate expansion for the pressure perturbation is (cf. (A 1 b) )  : 

(A 7 b )  

Qo satisfies (3.14b), while &, satisfies an inhomogeneous version of this equation (cf. 
(A 1 d) ) .  a: is fixed by requiring that Qi(0) = 0 and Q, + 0 as <-+ 00. Q2 satisfies 

where 
Y - c. = 

(Tb+ 1) (y-  1) 4. 

(A 7c) 

(A 7 4  

For matching with (A 5 c )  we require that 

- 
Q2- = lim Q, = Po. 

5- m 
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Then, with the normalization that qo = 1 in (A lc) ,  we have from matching (A 6 a )  
with (A lc)  that 

Po = 7E:/1296(az2 +Pz2);, 
and thus from (A 8a)  ,$; = T ( a , * 2 + / j , * z ) ~ Q 2 , .  (A 8c) 

(A 8 4  

From the form of (A 7c),  we conclude that 

~ ( C X , * ~  Q Z m  = a,  a; + b, /3: + 2d,  t1 + e,, 

where a,, b,, do and e,  are all real constants which can be found numerically for a 
given choice of (a:, P,*). It follows that 

Hence if 

c^l = do* (e, + d i  + bop,* +ao a;);. 

aoa,* < - ( e ,+d$+b ,P ,* ) ,  

2, is complex, and the appropriate choice of sign in (A8e)  is that which yields 
Im (el) > 0. As la,ag( --f 00, a match with (A 3) is possible. 

If 
a,a,* 2 - ( e , + d $ + b , p ; ) ,  (A 9b) 

then c^l is real, and it is necessary to calculate higher-order terms in order to identify 
the leading-order growth rate. To this end we hypothesize that Im (Q =I= 0; then the 
governing equation for Q, is 

where only those terms that force the complex part of the eigenfunction have been 
displayed. From (A 7c) and (A 8 d )  we conclude that 

~ ( c t , * 2 + , 8 ~ a ) ~ I m  7 (&3m) = 2d,Im (Q. (A lob) 

From matching with (A 5 c )  i t  follows that 

R 

(A 1Oc) 

and then after matching both 
outer region I, we conclude that 

and p2 with the exponentially decaying pressure in 

Im(P2)+-&dOIm(c",) as r-too. (A 10d) 

I n  the case of the Chapman viscosity law, CH showed that a similar matching 
argument generates two terms on the right-hand side of the equivalent expression to 
(A 10d). 

--f 0, then it will force 
an O(&) complex term in (A 7 b ) .  In  turn this will lead to an O(M-q)  term by 
interaction with the basic velocity profile (A 7 a ) ,  but this complex term is larger in 
magnitude than the O(M-9) term supposed to be the largest complex term in (A 7b) .  
We conclude by contradiction that the integral in (A 6 b )  must be real as r + O .  

As in CH and SB, since i, is real, there is a critical layer at yc, defined as where 
G, = E l  (the subscript c indicates evaluation at  qc) .  This generates a complex 

Next we note from (A 6 b )  that if the integral is complex as 
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FIGURE 15. Schematic illustration of the growth rate in the immediate neighbourhood of an 
acoustic-mode eigenvalue. The three generic types of behaviour are illustrated: (a) do < ils < 0, ( b )  
CIS < do < 0, and (c) i,, < 0 < do. 

contribution to the integral in (A Bb) for 7 > yc. Hence from (A Bb), (A lob), and the 
standard formulae for jumps across linear critical layers where I m  (c) > 0, it  follows 
that 

In the limit when CI1 < - 1, (A 11) can be shown to match with the second-order term 
in (A 3).  Also, as t1 -+ do,  Im (8,) --f 00, with the result that a match can in principle be 
made with (A 8 e )  ; although strictly a further subregion needs to be considered for the 
match to be made perfect. 

The nature of solutions to (A 8 e )  and (A 11) depends on the relative magnitudes 
of the real constant do ,  and the scaled velocity at the generalized inflexion point, i.e. 
&. Rather than calculate do for many different velocity profiles, here we outline the 
three types of generic behaviour that can occur. 

( a )  If do < tls < 0, then a plot of Im (t2) against a, a: is as shown schematically in 
figure 15 (a).  The dashed line indicates the value of a, a,* at which El = do. There are 
two independent branches corresponding to the two choices of sign in (A 8 e ) ;  one of 
these is the continuation of the long-wavelength vorticity mode, while the other is a 
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small-growth-rate acoustic mode. For the first eigenvalue given by (3.15 b) ,  numerical 
evaluation yields do = -2.23. Since tlS = -0.99 an independent small-growth-rate 
acoustic mode is predicted. This is confirmed by the full numerical solutions of 
Rayleigh's equation for M = 20 reported in $6. 

(b)  If t,, < do < 0, then there are again two independent branches corresponding 
to the two choices of sign in (A 8 e )  - see figure 15(b). However, now there is no 
independent small-growth-rate acoustic mode ; instead one branch of the long- 
wavelength vorticity modes terminates as an inflexion-point neutral mode, while the 
other terminates as a free-stream neutral mode. If tlS < 2d0, then the two modes do 
not overlap in the wavenumber range, and there is a narrow range of wavenumbers 
for which there is no growing mode. 

< 0 < do, the negative sign in (A 8 e )  is appropriate and there is only one 
identifiable branch for which Im(E,) = O(1) (see figure 15c) ;  there is of course 
another branch for which Im (13,) = O(1). Again there is no independent small- 
growth-rate acoustic mode. One branch of the long-wavelength vorticity mode 
terminates as an inflexion-point neutral mode, while the other terminates as a 
neutral mode with a wave speed greater than that of the free stream (as do > 0). In 
the latter case, the lack of a critical layer means that the leading-order growth rate 
is essentially given by (A 8 e )  right up to the neutral point. There is a narrow range 
of wavenumbers for which there is no growing mode. In unscaled variables this gap 
is very narrow. 

Finally, we note the differences to the above results if we had considered spatial 
rather than temporal stability. As in $3.1 simplifications arise because on the almost- 
neutral acoustic-mode scaling the waves travel at  approximately the free-stream 
velocity. Therefore, writing 

w = (l+C")a, (A 12a)  
Rayleigh 's equation becomes 

( c )  If 

On expanding for small 6, the leading-order equation is formally the same as for the 
temporal stability case if we identify w and a. As a result the equations in the 
adjustment layer and the exponentially decaying region do not change to the order 
calculated. However, in the high-temperature boundary layer, the forcing terms for 
&, and Q3 are affected. Suppose that, based on (A 4a) ,  we expand the frequency as 

1 1 1 
w = -woo* +w7wT + ... +j$w: + ...) 

i@ 
(A 12c) 

then the term 

(7 - 1) (Tb + ao) (1  - aO)'( (1 - u0) -a(? - 1)  (Tb + GO)) &O w$"I 

needs to be added to the right-hand side of the equation for Q2, i.e. (A 7 c ) ;  similarly 
for Q3. The effect of this is to change the coefficients for I3, and t, in (A 8 d )  and (A l ob)  
respectively; we denote this new coefficient by 8,. The dispersion relations (A 8e)  and 
(A 11) are then unchanged except for the substitution of do for do. In particular, if the 
abscissa in figure 1 5  is interpreted as the scaled frequency, then the three generic 
types of behaviour illustrated can still occur. 

The value of J0 can thus have an important effect on a fixed-frequency disturbance 
travelling downstream. If we assume that such a disturbance remains linear (despite 
its exponential growth), then its scaled frequency, w ,  changes as the boundary layer 
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thickens. If do < c^ls (figure 15a), then a long-wavelength vorticity mode excited 
upstream will still exist after the scaled frequency has passed through one of the 
eigenvalues (3.15b), although the spatial growth rate will have decreased temporally 
at the eigenvalue. However, if do > El,, then close to the eigenvalue the growth rate 
decreases to zero, with the result that the mode will have to be re-excited if it is to 
occur further downstream. We note that because of the existence of a critical layer 
at. the eigenvalues, nonlinear effects may have an enhanced significance as the 
disturbance evolves through these specific wavenumbers (cf. Goldstein & Wundrow 
1990, and see the recent work of Wundrow 1992). 
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